

AFRL-IF-RS-TR-2006-264
Final Technical Report
August 2006

NEW ARCHITECTURES, ALGORITHMS AND
DESIGNS THAT LEAD TO IMPLEMENTED
MACHINE REASONING OVER KNOWLEDGE IN
EPISTEMIC AND DEONTIC FORMATS, IN THE
SERVICE OF ADVANCED WARGAMING

Rensselaer Polytechnic Institute

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-264 has been reviewed and is approved for publication.

APPROVED: /s/

 DAVID O. ROSS
Project Engineer

 FOR THE DIRECTOR: /s/

 JAMES W. CUSACK
 Chief, Information Systems Division

Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUG 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Aug 04 – Sep 05
5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-04-2-0165

4. TITLE AND SUBTITLE
NEW ARCHITECTURES, ALGORITHMS AND DESIGNS THAT LEAD
TO IMPLEMENTED MACHINE REASONING OVER KNOWLEDGE IN
EPISTEMIC AND DEONTIC FORMATS, IN THE SERVICE OF
ADVANCED WARGAMING

5c. PROGRAM ELEMENT NUMBER
62702F

5d. PROJECT NUMBER
558B

5e. TASK NUMBER
3G

6. AUTHOR(S)

Selmer Bringsjord, Konstantine Arkoudas and Yingrui Yang

5f. WORK UNIT NUMBER
WG

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rensselaer Polytechnic Institute (RPI)
110 Eighth Street
Troy NY 12180

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFSB
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-264

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 06-577

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This effort investigated new architectures, algorithms, and designs to lead to: implemented machine reasoning over knowledge in
expressive formats that include doxastic and deontic operators; understanding use of such implementations in a multi-agent setting;
and implementation into other relevant DoD-related efforts. The RASCALS cognitive architecture has been developed further; new
algorithms have been devised in mechanized epistemic and deontic logics; and the basic design for a logicist intelligent agent,
callable from other systems, has been implemented.

15. SUBJECT TERMS

Algorithms, machine reasoning, doxastic and deontic operators, mechanized epistemic and deontic logics, logicist intelligent agent

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
David O. Ross

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

48
19b. TELEPONE NUMBER (Include area code)

Table of Contents

I What is in This Report? 1

II Work Performed, Indexed to SOW 2

1 Overall Objective 2
2 Technical Requirements from the SOW 2
2.1 Requirement 4.1 . . 2
2.1.1 Requirement 4.1.1 2
2.1.2 Requirement 4.1.2 .3
2.1.3 Requirement 4.1.3 . 3
2.1.4 Requirement 4.1.4 .3

III LNAI Paper 4

IV GameOn-2005 Paper 21

V AAAI-FS/IEEE Paper 30

VI IEEE Paper 37

VII Explanation of Associated Code 44

i

Part I

What is in This Report?
This document, combined with associated code (sent electronically earlier under separate cover, and — in
the case of Athena — acquired online), constitutes the final report for:

Project name: “New Architectures, Algorithms, and Designs that Lead to Implemented Ma-
chine Reasoning over Knowledge in Epistemic & Deontic Formats, in the Service of Advanced
Wargaming”

PIs: Selmer Bringsjord, Konstantine Arkoudas, Yingrui Yang. (POC: Bringsjord.)

Grant total: $75,000 (includes overhead)

The structure of this report is as follow:

• Summary of Work Performed, Indexed to SOW.

• Paper #1, on multi-agent reasoning in connection with epistemic logic: “Metareasoning for Multi-
Agent Epistemic Logics.”1

Hereafter referred to as simply ‘LNAI paper.’

• Paper #2, on an advanced synthetic character (E) in connection with the RASCALS cognitive archi-
tecture: “Advanced Synthetic Characters, Evil, and E.”2

Hereafter referred to as simply ‘GameOn-2005 paper.’

• Paper #3, on mechanizing deontic logic: “Toward Ethical Robots via Mechanized Deontic Logic”

Hereafter referred to as simply ‘AAAI-FS paper.’

• Paper #4, on generalizing our mechanizing of deontic logic: , about to appear in IEEE Intelligent
Systems.3

Hereafter referred to as simply ‘IEEE paper.’

• Athena tutorial (in-person demos of Athena at AFRL to follow in May 2006, tentatively scheduled
specifically for the week of May 8)

• Explanation of associated code (in-person demos at AFRL took place in May 2006). Materials (Win-
dows executable of l-agent derived from Slate, tutorial transcript of simple session recorded demo of
the executable as a movie, and two ath files) are available at:

http://www.cogsci.rpi.edu/research/rair/wargaming/

1The full reference is: Arkoudas, A. & Bringsjord. S. (2005) “Metareasoning for Multi-agent Epistemic Logics,” in Lecture
Notes in Artificial Intelligence (LNAI), (New York, NY: Springer–Verlag), pp. 111–125.

2The full reference is: Bringsjord, S., Khemlani, S., Arkoudas, K., McEvoy, C., Destefano, M., Daigle, M. (2005) “Advanced
Synthetic Characters, Evil, and E,” Game-On 2005, 6th International Conference on Intelligent Games and Simulation,
(Ghent-Zwijnaarde, Belgium: European Simulation Society), pp. 31–39.

3The paper is in production at present.

1

http://www.cogsci.rpi.edu/research/rair/wargaming

Part II

Work Performed, Indexed to SOW

1 Overall Objective

The overall objective of this project, pulled verbatim from the SOW:

1.1 The objective of this effort is to investigate new architectures, algorithms, and designs to lead
to: implemented machine reasoning over knowledge in expressive formats that include doxastic
(= epistemic) and deontic operators; understanding of the tractability of using such implemen-
tations in a multi-agent setting; and transfer of such architectures, algorithms, and eventual
implementations into other relevant DoD-related efforts.

Numerous such investigations have been conducted. The RASCALS cognitive architecture has been devel-
oped further, in connection with the synthetic character known simply as ‘E’; new algorithms have been
devised in the area of mechanized epistemic and deontic logics; and the basic design for a logicist intelli-
gent agent (or just an l-agent), callable from other systems, has been implemented. Corresponding to these
achievements, which are associated with the more specific points in the SOW (as explained below), are pub-
lished papers and code made available to AFRL. The papers are included in this document, and the code
for l-agents, contextualized in this document, is provided at

http://www.cogsci.rpi.edu/research/rair/wargaming/

At this location, a Windows executable is provided, as well as a transcript of a simple session, a recorded
tutorial demonstration, and two ath files.

2 Technical Requirements from the SOW

2.1 Requirement 4.1

4.1 The contractor shall design, develop, document, demonstrate, and deliver a machine reasoning
capability to help support construction of cognitively robust intelligent agents; specifically, this
capability will allow agents to reason over doxastic and deontic information. This capability will
be realized in the contractor’s pre-existing tools and systems (“contractors systems”). These
pre-existing systems are owned by the contractor, and include: Athena, MARMML, Slate, and
RASCALS. Other pre-existing systems will be used as well, and are in the public domain (e.g.,
SNARK).

The capability in question is detailed in two papers included here (LNAI and AAAI-FS/IEEE). Reasoning
over doxastic information is detailed in the LNAI paper. Reasoning over deontic information is detailed
in the AAAI-FS/IEEE paper. Corresponding ath files are provided. This brings us to the more specific
sub-requirement here:

2.1.1 Requirement 4.1.1

Rendering Scenarios Expressed Doxastic Systems (e.g., KD45) in Computational Form via Logic-
Based AI Techniques. The contractor shall develop the theoretical constructions (architectures,
algorithms, designs, etc.) necessary for the computational implementation, in the contractor’s
systems, of test scenarios expressed in the modal logic KD45 (and/or other such logics) of belief
and knowledge. This logic allows for reasoning over doxastic information, which is information
about what agents believe and know. The contractor shall provide a method to address the
technical problem known as “logical omniscience.”

2

http://www.cogsci.rpi.edu/research/rair/wargaming

The theoretical constructions called for in 4.1.1 have been invented, and are presented in the LNAI paper.
The implementation has been accomplished as well; it is reported in the LNAI paper, and, again, the
associated code is provided on the RAIR Lab’s web site (see Part VIII). The next sub-requirement under
4.1 is:

2.1.2 Requirement 4.1.2

Rendering Scenarios Expressed Deontic Systems (e.g., DSDL3) in Computational Form via Logic-
Based AI Techniques. The contractor shall develop the theoretical constructions necessary for
the computational implementation, in the contractors systems, of test scenarios expressed in the
modal logic DSDL3 (Lewis 1974) (and/or other such logics) of obligation. This logic allows for
reasoning over deontic information, which is information about the moral status of actions. The
contractor shall address the technical problem known as “adequacy” (or conditional obligation).

The theoretical constructions alluded to here have been invented, and are specified in the AAAI/IEEE paper.
In addition, the implementation has been accomplished. The relevant Athena code is provided on the RAIR
Lab web site (see Part VIII).

2.1.3 Requirement 4.1.3

Long-Term Use by AFRL. The contractor will investigate the design of an application program-
ming interface (API) that allows developers working in the Java programming language at AFRL
to exploit the capability referred to in section 4.1. Such an API will make possible the long-term
use of this capability in conjunction with the contractors systems at AFRL. Members of AFRL’s
Third Generation Wargaming Group (3GWG) will advise the contractor about the conditions
the API must satisfy, and will make available its Java-based systems, and specifications thereof,
to the contractor, in order to enable the design of API by the contractor.

Conditions that the API would need to satisfy have not been provided, and the Java-based systems, and
specifications thereof, have not been provided by AFRL’s 3GWG. (Are the systems in question still under
development at AFRL Rome?) However, the RAIR Lab has nonetheless designed and built a number of
functions that would be central parts of any calls out from 3GWG Java-based systems to our reasoning
technology. These functions are provided on the RAIR Lab’s web site, and can be demonstrated and
explained in person in the planned upcoming visit on or shortly after May 8. Calls out from any Java-based
system should follow the interoperability standards currently in place in DTO, which are based on the ISO
Common Logic standard, and are gaining steam as an across-the-board standard for DoD R&D. Readers are
once again referred to Part VIII.

2.1.4 Requirement 4.1.4

Testbed Development. The contractor shall document the appropriate set of test scenarios referred
to in sections 2.1.1 and 2.1.3, coordinated with the Government, for the reasoning technology
developed. Some of these test scenarios will involve doxastic information; some will involve
deontic information.

• 4.1.4.1 The contractor shall deliver all applications developed and associated software im-
plementations of the modal logics described in the form of computer code executable in the
contractor’s systems.

• 4.1.4.2 The contractor shall develop and deliver a detailed technical tutorial and maintenance
document for the contractors systems.

The test scenarios are detailed in the LNAI (doxastic) and AAAI/IEEE (deontic) papers. Once again, code
is available on the RAIR Lab’s web site. Regarding tutorial information, a full Athena tutorial is included
in this document. In-person tutorials will be provided as well (tentatively planned for the week of May 8
2006).

3

Metareasoning for multi-agent epistemic logics

Konstantine Arkoudas and Selmer Bringsjord

RPI
{arkouk,brings}@rpi.edu

Abstract. We present an encoding of a sequent calculus for a multi-
agent epistemic logic in Athena, an interactive theorem proving system
for many-sorted first-order logic. We then use Athena as a metalanguage
in order to reason about the multi-agent logic an as object language.
This facilitates theorem proving in the multi-agent logic in several ways.
First, it lets us marshal the highly efficient theorem provers for clas-
sical first-order logic that are integrated with Athena for the purpose
of doing proofs in the multi-agent logic. Second, unlike model-theoretic
embeddings of modal logics into classical first-order logic, our proofs are
directly convertible into native epistemic logic proofs. Third, because we
are able to quantify over propositions and agents, we get much of the
generality and power of higher-order logic even though we are in a first-
order setting. Finally, we are able to use Athena’s versatile tactics for
proof automation in the multi-agent logic. We illustrate by developing a
tactic for solving the generalized version of the wise men problem.

1 Introduction

Multi-agent modal logics are widely used in Computer Science and AI. Multi-
agent epistemic logics, in particular, have found applications in fields ranging
from AI domains such as robotics, planning, and motivation analysis in natu-
ral language [13]; to negotiation and game theory in economics; to distributed
systems analysis and protocol authentication in computer security [16, 31]. The
reason is simple—intelligent agents must be able to reason about knowledge. It is
therefore important to have efficient means for performing machine reasoning in
such logics. While the validity problems for most propositional modal logics are
of intractable theoretical complexity1, several approaches have been investigated
in recent years that have resulted in systems that appear to work well in prac-
tice. These approaches include tableau-based provers, SAT-based algorithms,
and translations to first-order logic coupled with the use of resolution-based the-
orem provers. Some representative systems are Fact [24], KSATC [14], TA [25],
LWB [23], and MSPASS [38].

Tranlation-based approaches (such as that of MSPASS) have the advantage
of leveraging the tremendous implementation progress that has occurred over
1 For instance, the validity problem for multi-agent propositional epistemic logic is

PSPACE-complete [18]; adding a common knowledge operator makes the problem
EXPTIME-complete [21].

4

Metareasoning for multi-agent epistemic logics 7

the last few decades in first-order theorem proving. Soundness and completeness
are ensured by the soundness and completeness of the resolution prover (once the
soundness and completeness of the translation have been shown), while a decision
procedure is automatically obtained for any modal logic that can be translated
into a decidable fragment of first-order logic (such as the two-variable fragment).
Furthermore, Kripke frames are first-order definable [17], so translating from a
modal setting to the classical first-order setting is fairly straightforward. For
instance, the well-known formula [2P ∧2(P ⇒Q)]⇒2Q becomes

∀ w1 . [(∀ w2 . R(w1, w2)⇒P (w2)) ∧
(∀ w2 . R(w1, w2)⇒P (w2)⇒Q(w2))]⇒ (∀ w2 . R(w1, w2)⇒Q(w2))

Here the variables w1 and w2 range over possible worlds, and the relation R
represents Kripke’s accessibility relation. A constant propositional atom P in
the modal language becomes a unary predicate P (w) that holds (or not) for a
given world w.

This is the classical translation of modal logic into first-order logic [18], and
we might say that it is a semantic embedding, since the Kripke semantics of
the modal language are explicitly encoded in the translated result. This is, for
instance, the approach taken by McCarthy in his “Formalizing two puzzles in-
volving knowledge” [30]. A drawback of this approach is that proofs produced
in the translated setting are difficult to convert back into a form that makes
sense for the user in the original modal setting, altough alternative translation
techniques such as the functional translation to path logic can alleviate this issue
in some cases [39]. Another drawback is that if a result is not obtained within
a reasonable amount of time (which is almost certain to happen when no deci-
sion procedure is available, as in first-order modal logics), then a batch-oriented
prover is of little help to the user due to its “low bandwidth of interaction” [12].
Much greater flexibilitInteractive proof systems such as PVS [37], HOL [20], Is-
abelle [34], and Athena [2] that offer tactics, facilities for goal decomposition and
computation,

In this paper we explore another approach: We embed a multi-agent epis-
temic logic into many-sorted first-order logic in a proof-theoretic rather than
in a model-theoretic way. 2 Specifically, we use the interactive theorem proving
system Athena (which is briefly reviewed in the Appendix) to encode the for-
mulas of the epistemic logic along with the inference rules of a sequent calculus
for it. Hence first-order logic becomes our metalanguage and the epistemic logic
becomes our object language. We then use standard first-order reasoning (our
metalanguage) to reason about proofs in the object logic. In effect, we end up
reasoning about reasoning—hence the term metareasoning. Since our metarea-
soning occurs at the standard first-order level, we are free to leverage existing
theorem-proving systems for automated deduction. In particular, we make heavy

2 This paper treats a propositional logic of knowledge, but the technique can be readily
applied to full first-order multi-agent epistemic logic, and indeed to hybrid multi-
modal logics, e.g., combination logics for temporal and epistemic reasoning.

5

8 Arkoudas, Bringsjord

use of Vampire [41], a cutting-edge resolution-based prover that is seamlessly in-
tegrated with Athena.

Our approach has two additional advantages. First, it is trivial to translate
the constructed proofs into modal form, since the Athena proofs are already
about proofs in the modal logic. Second, because the abstract syntax of the epis-
temic logic is explicitly encoded in Athena, we can quantify over propositions,
sequents, and agents. Accordingly, we get the generalization benefits of higher-
order logic even in a first-order setting. This can result in significant efficiency
improvements. For instance, in solving the generalized wise men puzzle it is nec-
essary at some point to derive the conclusion M2 ∨ · · · ∨Mn from the three
premises ¬Kα(M1), Kα(¬(M2 ∨ · · · ∨Mn)⇒M1), and

¬(M2 ∨ · · · ∨Mn)⇒Kα(¬(M2 ∨ · · · ∨Mn))

where M1, . . . ,Mn are atomic propositions and α is an epistemic agent, n > 1.
In the absence of an explicit embedding of the epistemic logic, this would have
to be done with a tactic that accepted a list of propositions [M1 · · ·Mn] as input
and performed the appropriate deduction dynamically, which would require an
amount of effort quadratic in the length of the list. By contrast, in our approach
we are able to formulate and prove a “higher-order” lemma stating

∀ P,Q, α . {¬Kα(P),Kα(¬Q⇒P),¬Q⇒Kα(¬Q)} `Q

Obtaining the desired conclusion for any given M1, . . . ,Mn then becomes a mat-
ter of instantiating this lemma with P 7→ M1 and Q 7→ M2 ∨ · · · ∨Mn. We have
thus reduced the asymptotic complexity of our task from quadratic time to con-
stant time.

But perhaps the most distinguishing aspect of our work is our emphasis on
tactics. Tactics are proof algorithms, which, unlike conventional algorithms, are
guaranteed to produce sound results. That is, if and when a tactic outputs a
result P that it claims to be a theorem, we can be assured that P is indeed a
theorem. Tactics are widely used for proof automation in first- and higher-order
proof systems such as HOL [20] and Isabelle [34]. In Athena tactics are called
methods, and are particularly easy to formulate owing to Athena’s Fitch-style
natural deduction system and its assumption-base semantics [3]. A major goal of
our research is to find out how easy—or difficult—it may be to automate multi-
agent modal logic proofs with tactics. Our aim is not to obtain a completely
automatic decision procedure for a certain logic (or class of logics), but rather to
enable efficient interactive—i.e., semi-automatic—theorem proving in such logics
for challenging problems that are beyond the scope of completely automatic
provers. In this paper we formulate an Athena tactic for solving the generalized
version of the wise men problem (for any given number of wise men). The relative
ease with which this method was formulated is encouraging.

The remainder of this paper is structured as follows. In the next section we
present a sequent calculus for the epistemic logic that we will be encoding. In
Section 3 we present the wise men puzzle and formulate an algorithm for solving
the generalized version of it in the sequent calculus of Section 2. In Section 4

6

Metareasoning for multi-agent epistemic logics 9

Γ ` P Γ `Q [∧-I]
Γ ` P ∧Q

Γ ` P ∧Q [∧-E1]
Γ ` P

Γ ` P ∧Q [∧-E2]
Γ `Q

Γ ` P [∨-I1]
Γ ` P ∨Q

Γ `Q [∨-I2]
Γ ` P ∨Q

Γ ` P1 ∨ P2 Γ, P1 `Q Γ, P2 `Q [∨-E]
Γ `Q

Γ, P `Q [⇒-I]
Γ ` P ⇒Q

Γ ` P ⇒Q Γ ` P [⇒-E]
Γ `Q

Γ ` ¬¬P [¬-E]
Γ ` P

Γ, P ` ⊥ [¬-I]
Γ ` ¬P

[Reflex]
Γ, P ` P

Γ ` P [Dilution]
Γ ∪ Γ ′ ` P

Γ ` P ∧ ¬P [⊥-I]
Γ ` ⊥

[>-I]
Γ ` >

Fig. 1. Inference rules for the propositional connectives.

we discuss the Athena encoding of the epistemic logic and present the Athena
method for solving the generalized wise men problem. Finally, in Section 5 we
consider related work.

2 A sequent formulation of a multi-agent epistemic logic

We will use the letters P , Q, R, . . ., to designate arbitrary propositions, built
according to the following abstract grammar:

P ::= A | > | ⊥ | ¬P | P ∧Q | P ∨Q | P ⇒Q | Kα(P) | C(P)

where A and α range over a countable set of atomic propositions (“atoms”) and
a primitive domain of agents, respectively. Propositions of the form Kα(P) and
C(P) are read as follows:

Kα(P): agent α knows proposition P

C(P): it is common knowledge that P holds

By a context we will mean a finite set of propositions. We will use the letter
Γ to denote contexts. We define a sequent as an ordered pair 〈Γ, P 〉 consisting of
a context Γ and a proposition P . A more suggestive notation for such a sequent

7

10 Arkoudas, Bringsjord

[K]
Γ ` [Kα(P ⇒Q)]⇒ [Kα(P)⇒Kα(Q)]

[T]
Γ `Kα(P)⇒P

∅ ` P [C-I]
Γ ` C(P)

[C-E]
Γ ` C(P)⇒Kα(P)

[CK]
Γ ` [C(P ⇒Q)]⇒ [C(P)⇒C(Q)]

[R]
Γ ` C(P)⇒C(Kα(P))

Fig. 2. Inference rules for the epistemic operators.

is Γ ` P . Intuitively, this is a judgment stating that P follows from Γ . We will
write P, Γ (or Γ, P) as an abbreviation for Γ ∪ {P}. The sequent calculus that
we will use consists of a collection of inference rules for deriving judgments of
the form Γ ` P . Figure 1 shows the inference rules that deal with the standard
propositional connectives. This part is standard (e.g., it is very similar to the
sequent calculus of Ebbinghaus et al. [15]). In addition, we have some rules
pertaining to Kα and C, shown in Figure 2.

Rule [K] is the sequent formulation of the well-known Kripke axiom stating
that the knowledge operator distributes over conditionals. Rule [CK] is the cor-
responding principle for the common knowledge operator. Rule [T] is the “truth
axiom”: an agent cannot know false propositions. Rule [CI] is an introduction
rule for common knowledge: if a proposition P follows from the empty set of
hypotheses, i.e., if it is a tautology, then it is commonly known. This is the
common-knowledge version of the “omniscience axiom” for single-agent knowl-
edge which says that Γ `Kα(P) can be derived from ∅ ` P . We do not need to
postulate that axiom in our formulation, since it follows from [C-I] and [C-E].
The latter says that if it is common knowledge that P then any (every) agent
knows P , while [R] says that if it is common knowledge that P then it is common
knowledge that (any) agent α knows it. [R] is a reiteration rule that allows us to
capture the recursive behavior of C, which is usually expressed via the so-called
“induction axiom”

C(P ⇒E(P))⇒ [P ⇒C(P)]

where E is the shared knowledge operator. Since we do not need E for our
purposes, we omit its formalization and “unfold” C via rule [R] instead.
We state a few lemmas that will come handy later:

Lemma 1 (Cut). If Γ1 ` P1 and Γ2, P1 ` P2 then Γ1 ∪ Γ2 ` P2.

Proof: Assume Γ1 ` P1 and Γ2, P1 ` P2. Then, by [⇒-I], we get Γ2 ` P1 ⇒P2.
Further, by dilution, we have Γ1 ∪ Γ2 ` P1 ⇒P2 and Γ1 ∪ Γ2 ` P1. Hence, by
[⇒-E], we obtain Γ1 ∪ Γ2 ` P2. ut

The proofs of the remaining lemmas are equally simple exercises:

8

Metareasoning for multi-agent epistemic logics 11

Lemma 2 (⇒-transitivity). If Γ ` P1 ⇒P2 and Γ ` P2 ⇒P3 then Γ ` P1 ⇒P3.

Lemma 3 (contrapositive). If Γ ` P ⇒Q then Γ ` ¬Q⇒¬P .

Lemma 4. (a) ∅ ` (P1 ∨ P2)⇒ (¬P2 ⇒P1); and (b) Γ ` C(P2) whenever
∅ ` P1 ⇒P2 and Γ ` C(P1).

Lemma 5. For all P,Q, and Γ , Γ ` [C(P) ∧ C(Q)]⇒C(P ∧Q).

3 The generalized wise men puzzle

Consider first the three-men version of the puzzle:

Three wise men are told by their king that at least one of them has a
white spot on his forehead. In reality, all three have white spots on their
foreheads. We assume that each wise man can see the others’ foreheads
but not his own, and thus each knows whether the others have white
spots. Suppose we are told that the first wise man says, “I do not know
whether I have a white spot,” and that the second wise man then says,
“I also do not know whether I have a white spot.” Now consider the
following question: Does the third wise man now know whether or not
he has a white spot? If so, what does he know, that he has one or doesn’t
have one?

This version is essentially identical to the muddy-children puzzle, the only
difference being that the declarations of the wise men are made sequentially,
whereas in the muddy-children puzzle, the children proclaim what they know
(or not know) in parallel at every round.

In the generalized version of the puzzle we have an arbitrary number n + 1
of wise men w1, . . . , wn+1, n ≥ 1. They are told by their king that at least one
them has a white spot on his forehead. Again, in actuality they all do. And they
can all see one another’s foreheads, but not their own. Supposing that each of
the first n wise men, w1, . . . , wn, sequentially announces that he does not know
whether or not he has a white spot on his forehead, the question is what would
the last wise man wn+1 report.

For all n ≥ 1, it turns out that the last—(n + 1)st—wise man knows he is
marked. The case of two wise men is simple. The reasoning runs essentially by
contradiction. The second wise man reasons as follows:

Suppose I were not marked. Then w1 would have seen this, and knowing
that at least one of us is marked, he would have inferred that he was
the marked one. But w1 has expressed ignorance; therefore, I must be
marked.

Consider now the case of n = 3 wise men w1, w2, w3. After w1 announces that
he does not know that he is marked, w2 and w3 both infer that at least one of
them is marked. For if neither w2 nor w3 were marked, w1 would have seen this

9

12 Arkoudas, Bringsjord

and would have concluded—and stated—that he was the marked one, since he
knows that at least one of the three is marked. At this point the puzzle reduces
to the two-men case: both w2 and w3 know that at least one of them is marked,
and then w2 reports that he does not know whether he is marked. Hence w3

proceeds to reason as previously that he is marked.

In general, consider n + 1 wise men w1, . . . , wn, wn+1, n ≥ 1. After the first
j wise men w1, . . . , wj have announced that they do not know whether they are
marked, for j = 1, . . . , n, the remaining wise men wj+1, . . . , wn+1 infer that at
least one of them is marked. This holds for j = n as well, which means that the
last wise man wn+1 will infer (and announce, owing to his honesty) that he is
marked.

The question is how to formalize this in our logic. Again consider the case
of two wise men w1 and w2. Let Mi, i ∈ {1, 2} denote the proposition that wi

is marked. For any proposition P , we will write Ki(P) as an abbreviation for
Kwi

(P). We will only need three premises:

S1 = C(¬K1(M1))
S2 = C(M1 ∨M2)
S3 = C(¬M2 ⇒K1(¬M2))

The first premise says that it is common knowledge that the first wise man
does not know whether he is marked. Although it sounds innocuous, note that
a couple of assumptions are necessary to obtain this premise from the mere
fact that w1 has announced his ignorance. First, truthfulness—we must assume
that the wise men do not lie, and further, that each one of them knows that
they are all truthful. And second, each wise man must know that the other
wise men will hear the announcement and believe it. Premise S2 says that it is
common knowledge that at least one of the wise men is marked. Observe that
the announcement by the king is crucial for this premise to be justified. The
two wise men can see each other and thus they individually know M1 ∨M2.
However, each of them may not know that the other wise man knows that at
least one of them is marked. For instance, w1 may believe that he is not marked,
and even though he sees that w2 is marked, he may believe that w2 does not
know that at least one of them is marked, as w2 cannot see himself. Finally,
premise S3 states that it is common knowledge that if w2 is not marked, then
w1 will know it (because w1 can see w2). From these three premises we are to
conclude that it is common knowledge that w2 is marked. Symbolically, we need
to derive the judgment {S1, S2, S3} ` C(M2). If we have encoded the epistemic
propositional logic in a predicate calculus, then we can achieve this immediately
by instantiating Lemma 7 below with α 7→ w1, P 7→ M1 and Q 7→ M2—without
performing any inference whatsoever. This is what we have done in Athena.

10

Metareasoning for multi-agent epistemic logics 13

For the case of n = 3 wise men our set of premises will be:

S1 = C(¬K1(M1))
S2 = C(M1 ∨M2 ∨M3)
S3 = C(¬(M2 ∨M3)⇒K1(¬(M2 ∨M3)))
S4 = C(¬K2(M2))
S5 = C(¬M3 ⇒K2(¬M3))

Consider now the general case of n + 1 wise men w1, . . . , wn, wn+1. For any
i = 1, . . . , n, define

Si
1 = C(¬Ki(Mi))

Si
2 = C(Mi ∨ · · · ∨Mn+1)

Si
3 = C(¬(Mi+1 ∨ · · · ∨Mn+1)⇒Ki(¬(Mi+1 ∨ · · · ∨Mn+1)))

The set of premises, which we will denote by Ωn+1, can now be defined as

Ωn+1 = {C(M1 ∨ · · · ∨Mn+1)}
n⋃

i=1

{Si
1, S

i
3}

Hence Ωn+1 has a total of 2n + 1 elements. Note that S1
2 is the commonly

known disjunction M1 ∨ · · · ∨Mn+1 and a known premise, i.e., a member of
Ωn+1. However, Si

2 for i > 1 is not a premise. Rather, it becomes derivable
after the ith wise man has made his announcement. Managing the derivation
of these propositions and eliminating them via applications of the cut is the
central function of the algorithm below. Before we present the algorithm we
state a couple of key lemmas.

Lemma 6. Consider any agent α and propositions P,Q, and let R1, R2, R3 be
the following three propositions:

1. R1 = ¬Kα(P);
2. R2 = Kα(¬Q⇒P);
3. R3 = ¬Q⇒Kα(¬Q)

Then {R1 ∧R2 ∧R3} `Q.

Proof. By the following sequent derivation:
1. {R1 ∧R2 ∧R3} `R1 [Reflex], ∧-E1

2. {R1 ∧R2 ∧R3} `R2 [Reflex], ∧-E1, ∧-E2

3. {R1 ∧R2 ∧R3} `R3 [Reflex], ∧-E2

4. {R1 ∧R2 ∧R3} `Kα(¬Q)⇒Kα(P) 2, [K], ⇒-E
5. {R1 ∧R2 ∧R3} ` ¬Q⇒Kα(P) 3, 4, Lemma 2
6. {R1 ∧R2 ∧R3} ` ¬Kα(P)⇒¬¬Q 5, Lemma 3
7. {R1 ∧R2 ∧R3} ` ¬¬Q 6, 1, ⇒-E
8. {R1 ∧R2 ∧R3} `Q 7, [¬-E]

ut

11

14 Arkoudas, Bringsjord

Lemma 7. Consider any agent α and propositions P,Q. Define R1 and R3

as in Lemma 6, let R2 = P ∨Q, and let Si = C(Ri) for i = 1, 2, 3. Then
{S1, S2, S3} ` C(Q).

Proof. Let R′
2 = ¬Q⇒P and consider the following derivation:

1. {S1, S2, S3} ` S1 [Reflex]
2. {S1, S2, S3} ` S2 [Reflex]
3. {S1, S2, S3} ` S3 [Reflex]
4. ∅ ` (P ∨Q)⇒ (¬Q⇒P) Lemma 4a
5. {S1, S2, S3} ` C((P ∨Q)⇒ (¬Q⇒P)) 4, [C-I]
6. {S1, S2, S3} ` C(P ∨Q)⇒C(¬Q⇒P) 5, [CK], [⇒-E]
7. {S1, S2, S3} ` C(¬Q⇒P) 6, 2, [⇒-E]
8. {S1, S2, S3} ` C(¬Q⇒P)⇒C(Kα(¬Q⇒P)) [R]
9. {S1, S2, S3} ` C(Kα(¬Q⇒P)) 8, 7, [⇒-E]
10. {R1 ∧Kα(¬Q⇒P) ∧R3} `Q Lemma 6
11. ∅ ` (R1 ∧Kα(¬Q⇒P) ∧R3)⇒Q 10, [⇒-I]
12. {S1, S2, S3} ` C((R1 ∧Kα(¬Q⇒P) ∧R3)⇒Q) 11, [C-I]
13. {S1, S2, S3} ` C(R1 ∧Kα(¬Q⇒P) ∧R3)⇒C(Q) 12, [CK], [⇒-E]
14. {S1, S2, S3} ` C(R1 ∧Kα(¬Q⇒P) ∧R3) 1, 3, 9, Lemma 5, [∧-I]
15. {S1, S2, S3} ` C(Q) 13, 14, [⇒-E]

ut

Our method can now be stated as follows:

Φ← {S1
1 , S1

2 , S1
3};

Σ← Φ ` S2
2 ;

Use Lemma 7 to derive Σ;

If n = 1 halt

else

For i = 2 to n do

begin

Φ← Φ ∪ {Si
1, S

i
3};

Σ′← {Si
1, S

i
2, S

i
3} ` Si+1

2 ;

Use Lemma 7 to derive Σ′;

Σ′′← Φ ` Si+1
2 ;

Use the cut on Σ and Σ′ to derive Σ′′;

Σ← Σ′′

end

The loop variable i ranges over the interval 2, . . . , n. For any i in that interval,
we write Φi and Σi for the values of Φ and Σ upon conclusion of the ith iteration
of the loop. A straightforward induction on i will establish:

Lemma 8 (Algorithm correctness). For any i ∈ {2, . . . , n},

Φi = {C(M1 ∨ · · · ∨Mn+1)}
i⋃

j=1

{Sj
1, S

j
3}

while Σi = Φi ` Si+1
2 .

12

Metareasoning for multi-agent epistemic logics 15

It follows that Φn = Ωn+1 and Σn = Φn ` Sn+1
2 = Ωn+1 ` Sn+1

2 Ωn+1 ` C(Mn+1)
which is our goal.

It is noteworthy that no such correctness argument is necessary in the formu-
lation of the algorithm as an Athena method. Athena methods are guaranteed
to be sound. As long as the produced result is of the right form (in our case, a
sequent of the form Ωn+1 ` C(Mn+1)), we can be assured that the result follows
logically from the contents of the assumption base.

4 Athena implementation

In this section we present the Athena encoding of the epistemic logic and our
method for solving the generalized version of the wise men puzzle (refer to the
Appendix for a brief review of Athena). We begin by introducing an uninter-
preted domain of epistemic agents: (domain Agent). Next we represent the ab-
stract syntax of the propositions of the logic. The following Athena datatype
mirrors the abstract grammar for propositions that was given in the beginning
of Section 2:

(datatype Prop

True

False

(Atom Boolean)

(Not Prop)

(And Prop Prop)

(Or Prop Prop)

(If Prop Prop)

(Knows Agent Prop)

(Common Prop))

We proceed to introduce a binary relation sequent that may obtain between
a finite set of propositions and a single proposition:

(declare sequent (-> ((FSet-Of Prop) Prop) Boolean))

Here FSet-Of is a unary sort constructor: for any sort T, (FSet-Of T) is a new
sort representing the set of all finite sets of elements of T. Finite sets are built
with two polymorphic constructors: the constant null, representing the empty
set; and the binary constructor insert, which takes an element x of sort T and
a finite set S (of sort (FSet-Of T)) and returns the set {x} ∪S. We also have all
the usual set-theoretic operations available (union, intersection, etc.).

The intended interpretation is that if (sequent S P) holds for a set of propo-
sitions S and a proposition P , then the sequent S ` P is derivable in the epis-
temic logic via the rules presented in Section 2. Accordingly, we introduce axioms
capturing those rules. For instance, the conjunction introduction rule is repre-
sented by the following axiom:

(define And-I

(forall ?B ?P ?Q

(if (and (sequent ?B ?P)

(sequent ?B ?Q))

(sequent ?B (And ?P ?Q)))))

13

16 Arkoudas, Bringsjord

Note that the lowercase and above is Athena’s built-in conjunction operator, and
hence represents conjunction at the metalanguage level, whereas And represents
the object-level conjunction operator of the epistemic logic.

The cut rule and the common knowledge introduction (necessitation) rule
become:

(define cut

(forall ?B1 ?B2 ?P ?Q

(if (and (sequent ?B1 ?P)

(sequent (insert ?P ?B2) ?Q))

(sequent (union ?B1 ?B2) ?Q))))

(define common-intro-axiom

(forall ?P ?B

(if (sequent null ?P)

(sequent ?B (Common ?P)))))

The remaining rules are encoded by similar first-order axioms.
We next proceed to derive several lemmas that are useful for the proof.

Some of these lemmas are derived completely automatically via the ATPs that
are integrated with Athena. For instance, the cut rule is proved automatically
(in about 10 seconds). As another example, the following result—part (b) of
Lemma 4—is proved automatically:

(forall ?B ?P1 ?P2

(if (and (sequent null (If ?P1 ?P2))

(sequent ?B (Common ?P1)))

(sequent ?B (Common ?P2))))

Other lemmas are established by giving natural deduction proofs. For instance,
the proof of Lemma 6 in Section 3 is transcribed virtually verbatim in Athena,
and validated in a fraction of a second. (The fact that the proof is abridged—
i.e., multiple steps are compressed into single steps—is readily handled by in-
voking ATPs that automatically fill in any gaps.) Finally, we are able to prove
Lemma 7, which is the key technical lemma. Utilizing the higher-order charac-
ter of our encoding, we then define a method main-lemma that takes an arbi-
trary list of agents [a1 · · · an], n ≥ 1, and specializes Lemma 7 with P 7→ Ma1 ,
Q 7→ Ma2 ∨ · · · ∨Man

, and α 7→ a1 (recall that for any agent α, Mα signi-
fies that α is marked). So, for instance, the application of main-lemma to the
list [a1, a2, a3] would derive the conclusion {S1, S2, S3} ` C(Ma2 ∨Ma3), where
S1 = C(¬Ka1(Ma1)), S2 = C(Ma1 ∨Ma2 ∨Ma3), and

S3 = C(¬(Ma2 ∨Ma3)⇒Ka1(¬(Ma2 ∨Ma3)))

We also need a simple result shuffle asserting the equality Γ, P1, P2 = Γ, P2, P1

(i.e., Γ ∪ {P1} ∪ {P2} = Γ ∪ {P2} ∪ {P1}).
Using these building blocks, we express the tactic for solving the generalized

wise men problem as the Athena method solve below. It takes as input a list of
agents representing wise men, with at least two elements. Note that the for loop
in the pseudocode algorithm has been replaced by recursion.

14

Metareasoning for multi-agent epistemic logics 17

(define (solve wise-men)

(dletrec

((loop (method (wise-men th)

(dmatch wise-men

([_] (!claim th))

((list-of _ rest)

(dlet ((new-th (!main-lemma wise-men)))

(dmatch [th new-th]

([(sequent context Q2)

(sequent (insert Q1

(insert Q2 (insert Q3 null))) P)]

(dlet ((cut-th

(!derive (sequent

(union

context

(insert Q1 (insert Q3 null)))

P)

[th new-th shuffle cut])))

(!loop rest cut-th))))))))))

(dlet ((init (!prove-goal-2 wise-men)))

(!loop (tail wise-men) init))))

Assuming that w1, w2, w3 are agents representing wise men, invoking the method
solve with the list [w1 w2 w3]) as the argument will derive the appropriate result:
Ω3 ` (Common (isMarked w3)), where Ω3 is the set of premises for the three-men
case, as defined in the previous section.

5 Related work

The wise men problem became a staple of epistemic AI literature after being
introduced by McCarthy [30]. Formalizations and solutions of the two-wise-men
problem are found in a number of sources [26, 40, 19], most of them in simple
multi-agent epistemic logics (without common knowledge). Several variations
have been given; e.g., Konolige has a version in which the third wise man states
that he does not know whether he is marked, but that he would know if only the
second wise man were wiser [28]. Ballim and Wilks [8] solve the three-men ver-
sion of the puzzle using the “nested viewpoints” framework. Vincenzo Pallotta’s
solution [33] is similar but his ViewGen framework facilitates agent simulation.
Kim and Kowalski [27] use a Prolog-based implementation of metareasoning to
solve the same version of the problem using common knowledge. A more natural
proof was given by Aiello et al. [1] in a rewriting framework.

The importance of metareasoning and metaknowledge for intelligent agents is
extensively discussed in “Logical foundations of Artifical Intelligence” by Gene-
sereth and Nillson [19] (it is the subject of an entire chapter). They stress that the
main advantage of an explicit encoding of the reasoning process is that it makes
it possible to “create agents capable of reasoning in detail about the inferential
abilities of and beliefs of other agents,” as well as enabling introspection.

15

18 Arkoudas, Bringsjord

The only work we are aware of that has an explicit encoding of an epistemic
logic in a rich metalanguage is a recent project [29] that uses the Calculus of
Constructions (Coq [11]). However, there are important differences. First, they
encode a Hilbert proof system, which has an adverse impact on the readability
and writability of proofs. The second and most important difference is our em-
phasis on reasoning efficiency. The seamless integration of Athena with state-of-
the-art provers such as Vampire and Spass is crucial for automation, as it enables
the user to skip tedious steps and keep the reasoning at a high level of detail.
Another distinguishing aspect of our work is our reliance on tactics. Athena uses
a block-structured natural-deduction style not only for writing proofs but also
for writing proof tactics (“methods”). Proof methods are much easier to write in
this style, and play a key role in proof automation. Our emphasis on automation
also differentiates our work from that of Basin et al. [9] using Isabelle, which only
addresses proof presentation in modal logics, not automatic proof discovery.

References

1. L. C. Aiello, D. Nardi, and M. Schaerf. Yet another solution to the three wisemen
puzzle. In Proceedings of the 3rd International Symposium on Methodologies for
Intelligent Systems, pages 398–407, 1988.

2. K. Arkoudas. Athena. http://www.cag.csail.mit.edu/~kostas/dpls/athena.
3. K. Arkoudas. Denotational Proof Languages. PhD dissertation, MIT, 2000.
4. K. Arkoudas, S. Khurshid, D. Marinov, and M. Rinard. Integrating model checking

and theorem proving for relational reasoning. In Proceedings of the 7th Interna-
tional Seminar on Relational Methods in Computer Science (RelMiCS 7), Malente,
Germany, May 2003.

5. K. Arkoudas and M. Rinard. Deductive runtime certification. In Proceedings of
the 2004 Workshop on Runtime Verification, Barcelona, Spain, April 2004.

6. K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard. On verifying a file system
implementation. Technical Report CSAIL TR 946, MIT CSAIL, 2004.

7. T. Arvizo. A virtual machine for a type-ω denotational proof language. Masters
thesis, MIT, June 2002.

8. A. Ballim and Y. Wilks. Artificial Believers. Lawrence Erlbaum Associates, Hills-
dale, New Jersey, 1991.

9. David Basin, Seán Matthews, and Luca Viganò. A modular presentation of modal
logics in a logical framework. In Jonathan Ginzburg, Zurab Khasidashvili, Carl
Vogel, Jean-Jacques Lévy, and Enric Vallduv́ı, editors, The Tbilisi Symposium on
Logic, Language and Computation: Selected Papers, pages 293–307. CSLI Publica-
tions, Stanford, CA, 1998.

10. K. Claessen and N. Sorensson. New techniques that improve Mace-style finite
model building. In Model Computation—principles, algorithms, applications, Mi-
ami, Florida, USA, 1973.

11. T. Coquand and G. Huet. The Calculus of Constructions. Information and Com-
putation, 76:95–120, 1988.

12. D. Cyrluk, S. Rajan, N. Shankar, , and M.K. Srivas. Effective theorem proving
for hardware verification. In Theorem Provers in Circuit Design (TPCD ’94),
volume 901 of Lecture Notes in Computer Science, pages 203–222, Bad Herrenalb,
Germany, sep 1994. Springer-Verlag.

16

Metareasoning for multi-agent epistemic logics 19

13. E. Davis and L. Morgenstern. Epistemic Logics and its Applications: Tutorial
Notes. www-formal.stanford.edu/leora/krcourse/ijcaitxt.ps.

14. Giunchiglia E., Giunchiglia F., Sebastiani R., and Tacchella A. More evaluation of
decision procedures for modal logics. In Cohn A. G., Schubert L., and Shapiro S.
C., editors, 6th international conference on principles of knowledge representation
and reasoning (KR’98), Trento, 2-5 June 1998.

15. H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer-Verlag,
2nd edition, 1994.

16. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about knowledge. MIT
Press, Cambridge, Massachusetts, 1995.

17. M. Fitting. Basic modal logic. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson,
editors, Logical foundations, volume 4 of Handbook of Logic in Artificial Intelligence
and Logic Programming. Oxford Science Publications, 1994.

18. D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional
modal logics: theory and applications. volume 4 of Studies in Logic and the Foun-
dations of Mathematics. Elsevier, 1994.

19. M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Mor-
gan Kaufmann, 1987.

20. M. J. C. Gordon and T. F. Melham. Introduction to HOL, a theorem proving envi-
ronment for higher-order logic. Cambridge University Press, Cambridge, England,
1993.

21. J. Halpern and Y. Moses. A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence, 54:319–379, 1992.

22. M. Hao. Using a denotational proof language to verify dataflow analyses. Masters
thesis, MIT, September 2002.

23. A. Heuerding. LWBtheory: information about some propositional logics via the
WWW. Logic Journal of the IGPL, 4(4):169–174, 1996.

24. I. Horrocks. Using an expressive description logic: FaCT or fiction? In Sixth In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
pages 636–647, 1998.

25. U. Hustadt and R. A. Schmidt. On evaluating decision procedures for modal logic.
In Fifteenth International Joint Conference on Artificial Intelligence, pages 202–
209, 1997.

26. M. Huth and M. Ryan. Logic in Computer Science: modelling and reasoning about
systems. Cambridge University Press, Cambridge, UK, 2000.

27. J. Kim and R. Kowalski. An application of amalgamated logic to multi-agent
belief. In M. Bruynooghe, editor, Second Workshop on Meta-Programming in Logic
META90, pages 272–283. 1990.

28. K. Konolige. A deduction model of belief. Research Notes in Artificial Intelligence.
Pitman, London, UK, 1986.

29. Pierre Lescanne. Epistemic logic in higher order logic: an experiment with COQ.
Technical Report RR2001-12, LIP-ENS de Lyon, 2001.

30. J. McCarthy. Formalization of two puzzles involving knowledge. In Vladimir
Lifschitz, editor, Formalizing Common Sense: Papers by John McCarthy. Ablex
Publishing Corporation, Norwood, New Jersey, 1990.

31. J.J. Meyer and W. Van Der Hoek. Epistemic Logic for Computer Science and
Artificial Intelligence. volume 41 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1995.

32. D. Musser. Generic Software Design. http://www.cs.rpi.edu/~musser/gsd.
33. V. Pallotta. Computational dialogue Models. In 10th Conference of the European

Chapter of the Association for Computational Linguistics EACL03, 2003.

17

20 Arkoudas, Bringsjord

34. L. Paulson. Isabelle, A Generic Theorem Prover. Lecture Notes in Computer
Science. Springer-Verlag, 1994.

35. F. J. Pelletier. A Brief History of Natural Deduction. History and Philosophy of
Logic, 20:1–31, 1999.

36. M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings of
the 1999 Workshop on Run-Time Result Verification, Trento, Italy, July 1999.

37. J. Rushby. PVS bibliography. Technical report, Computer Science Lab, SRI In-
ternational, constantly updated at http://www.csl.sri.com/pvs-bib.html.

38. R. A. Schmidt. MSPASS. http://www.cs.man.ac.uk/~schmidt/mspass/, 1999.
39. R. A. Schmidt and U. Hustadt. Mechanised reasoning and model generation for

extended modal logics. In H. C. M. de Swart, E. Orlowska, G. Schmidt, and
M. Roubens, editors, Theory and Applications of Relational Structures as Knowl-
edge Instruments, volume 2929 of Lecture Notes in Computer Science, pages 38–67.
Springer, 2003.

40. D. Snyers and A. Thayse. Languages and logics. In A. Thayse, editor, From modal
logic to deductive databases, pages 1–54. John Wiley & Sons, 1989.

41. A. Voronkov. The anatomy of Vampire: implementing bottom-up procedures with
code trees. Journal of Automated Reasoning, 15(2), 1995.

42. C. Weidenbach. Combining superposition, sorts, and splitting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 2. North-Holland,
2001.

A Athena Overview

Athena is a new interactive theorem proving system that incorporates facilities
for model generation, automated theorem proving, and structured proof repre-
sentation and checking. It also provides a higher-order functional programming
language, and a proof abstraction mechanism for expressing arbitrarily compli-
cated inference methods in a way that guarantees soundness, akin to the tactics
and tacticals of LCF-style systems such as HOL [20] and Isabelle [34]. Proof au-
tomation is achieved in two ways: first, through user-formulated proof methods;
and second, through the seamless integration of state-of-the-art ATPs such as
Vampire [41] and Spass [42] as primitive black boxes for general reasoning. For
model generation, Athena integrates Paradox [10], a new highly efficient model
finder. For proof representation and checking, Athena uses a block-structured
Fitch-style natural deduction calculus [35] with novel syntactic constructs and a
formal semantics based on the abstraction of assumption bases [3]. Most inter-
estingly, a block-structured natural deduction format is used not only for writing
proofs, but also for writing tactics (methods). This is a novel feature of Athena;
all other tactic languages we are aware of are based on sequent calculi. Tactics
in this style are considerably easier to write and remarkably useful in making
proofs more modular and abstract.

Athena has been used to implement a proof-emitting optimizing compiler
[36]; to integrate model checking and theorem proving for relational reasoning
[4]; to implement various “certifying” algorithms [5]; to verify the core operations
of a Unix-like file system [6]; to prove the correctness of dataflow analyses [22];
and to reason about generic software [32]. This section presents parts of Athena

18

Metareasoning for multi-agent epistemic logics 21

relevant to understanding the code in this paper. A more thorough presentation
of Athena’s syntax and semantics can be found elsewhere [7].

In Athena, an arbitrary universe of discourse (sort) is introduced with a
domain declaration, for example:

(domain Real)

(domain Person)

Function symbols and constants can then be declared on the domains, e.g.:

(declare + (-> (Real Real) Real))

(declare joe Person)

Relations are functions whose range is the predefined sort Boolean, e.g.,

(declare < (-> (Real Real) Boolean))

Inductively generated domains are introduced as datatypes, e.g.,

(datatype Nat

zero

(succ Nat))

Here Nat is freely generated by the constructors zero and succ. This is equivalent
to issuing the declarations (domain Nat), (declare zero Nat),

(declare succ (-> (Nat) Nat))

and additionally postulating a number of axioms, as well as an appropriate
induction principle, that constrain Nat to be freely generated by zero and succ.
The axioms and the induction principle are automatically generated when the
user defines the datatype.

The basic data values in Athena are terms and propositions. Terms are s-
expressions built from declared function symbols such as + and pi, and from vari-
ables, written as ?I for any identifier I. Thus ?x, (+ ?foo pi), (+ (+ ?x ?y) ?z),
are all terms. The (most general) sort of a term is inferred automatically; the
user does not have to annotate variables with their sorts. A proposition P is
either a term of sort Boolean (say, (< pi (+ ?x ?y))); or an expression of the
form (not P) or (� P1 P2) for � ∈ {and, or, if, iff}; or (Q x1 · · ·xn P) where
Q ∈ {forall, exists} and each xi a variable. Athena also checks the sorts of
propositions automatically using a Hindley-Milner-like type inference algorithm.

The user interacts with Athena via a read-eval-print loop. Athena displays
a prompt >, the user enters some input (either a phrase to be evaluated or a
top-level directive such as define, assert, declare, etc.), Athena processes the
user’s input, displays the result, and the loop starts anew.

The most fundamental concept in Athena is the assumption base—a finite set
of propositions that are assumed to hold, representing our “axiom set” or “knowl-
edge base”. Athena starts out with the empty assumption base, which then gets
incrementally augmented with the conclusions of the deductions that the user
successfully evaluates at the top level of the read-eval-print loop. proposition
can also be explicitly added into the global assumption base with the top-level
directive assert.

19

22 Arkoudas, Bringsjord

An Athena deduction D is always evaluated in a given assumption base β—
a finite set of propositions that are assumed to hold for the purposes of D.
Evaluating D in β will either produce a proposition P (the “conclusion” of D in
β), or else it will generate an error or will diverge. If D does produce a conclusion
P , Athena’s semantics guarantee β |= P , i.e., that P is a logical consequence of
β. There are several syntactic forms that can be used for deductions.

The form pick-any introduces universal generalizations: (pick-any I1 · · · In D)

binds the names I1 · · · In to fresh variables v1, . . . , vn and evaluates D. If D yields
a conclusion P , the result returned by the entire pick-any is (∀ v1, . . . , vn)P .

The form assume introduces conditionals: to evaluate (assume P D) in an
assumption base β, we evaluate D in β ∪ {P}. If that produces a conclusion Q,
the conditional P ⇒ Q is returned as the result of the entire assume. The form
(assume-let ((I P)) D) works like assume, but also lexically binds the name I
to the hypothesis P within D.

The form (dlet ((I1 D1) · · · (In Dn)) D) is used for sequencing and nam-
ing deductions. To evaluate such a deduction in β, we first evaluate D1 in β to
obtain a conclusion P1. We then bind I1 to P1, insert P1 into β, and continue
with D2. The conclusions Pi of the various Di are thus incrementally added
to the assumption base, becoming available as lemmas for subsequent use. The
body D is then evaluated in β ∪ {P1, . . . , Pn}, and its conclusion becomes the
conclusion of the entire dlet.

20

Advanced Synthetic Characters, Evil, and E∗

Selmer Bringsjord1, Sangeet Khemlani2, Konstantine Arkoudas3, Chris McEvoy4, Marc Destefano5, Matthew Daigle6

Department of Cognitive Science1−5

Department of Computer Science1,3,4

Rensselaer AI & Reasoning Laboratory:1−5

http://www.cogsci.rpi.edu/research/rair/index.php
Rensselaer Polytechnic Institute (RPI)

Troy NY 12180 USA
{selmer,arkouk,mcevoc,khemls,destem}@rpi.edu

6: Dept. of Computer Science Vanderbilt University Nashville TN mdaigle@isis.vanderbilt.edu

Abstract

We describe our approach to building advanced synthetic
characters, within the paradigm of logic-based AI. Such char-
acters don’t merely evoke beliefs that they have various men-
tal properties; rather, they must actually have such properties.
You might (e.g.) believe a standard synthetic character to be
evil, but you would of course be wrong. An advanced syn-
thetic character, however, can literally be evil, because it has
the requisite desires, beliefs, and cognitive powers. Our ap-
proach is based on our RASCALS architecture, which uses
simple logical systems (first-order ones) for low-level (per-
ception & action) and mid-level cognition, and advanced log-
ical systems (e.g., epistemic and deontic logics) for more ab-
stract cognition. To focus our approach herein, we provide a
glimpse of our attempt to bring to life one particular advanced
synthetic character from the “dark side” — the evil charac-
ter known simply as E. Building E entails that, among other
things, we formulate an underlying logico-mathematical def-
inition of evil, and that we manage to engineer both an ap-
propriate presentation of E, and communication between E
and humans. For presentation, which we only encapsulate
here, we use several techniques, including muscle simula-
tion in graphics hardware and approximation of subsurface
scattering. For communication, we use our own new “proof-
based” approach to Natural Language Generation (NLG). We
provide an account of this approach.

The Dearth of AI in AI
There’s an unkind joke — which made the rounds (e.g.) at
the Fall 2004 AAAI Fall Symposium on Human-Level AI —
about the need to create, within AI, a special interest group
called ‘AI’. This kind of cynicism springs from the not un-
common, and not totally inaccurate, perception that most of
AI research is aimed at exceedingly narrow problems light
years away from the cognitive capacities that distinguish hu-
man persons.1

∗The R&D described in this paper has been supported in part
by much appreciated grants from AFRL-Rome and DARPA-IPTO.

1An endless source of confirming examples can be found in the
pages of the Machine Learning journal. The dominant learning
technique that you yourself employ in striving to learn is reading;
witness what you’re doing at the moment. Yet, a vanishingly small
amount of R&D on learning is devoted to getting a computer pro-
gram to learn by reading.

Human-level AI is now so unusual that an entire upcom-
ing issue of AI Magazine will be devoted to the subject —
a bit odd, given that, at least when the field was young,
AI’s journal of record would have routinely carried papers
on mechanizing aspects of human-level cognition. Seminal
AI thinkers like Simon, Newell, Turing — these researchers
didn’t shy away from fighting to capture human-level intelli-
gence in machine terms. But now their attitude seems mori-
bund.

But gaming, simulation, and digital entertainment (and
hereafter we refer simply to ‘gaming’ to cover this entire
field/market), thankfully, are different: ultimately anyway,
they call for at least the appearance of human-level AI
(Bringsjord 2001). (On a case-by-case basis, as various
games show (e.g., The Sims (Electronic Arts Inc. 2000)), a
non-advanced character will of course do just fine.) Gaming
doesn’t strive just for a better SAT-based planner, or another
tweak in a learning algorithm that doesn’t relate in the least
to human learning. A SAT planner doesn’t constitute a vir-
tual person. But that’s precisely what we want in gaming, at
least ultimately. And even in the short term we want char-
acters that at least seem human. Methodologically speaking,
gaming’s best bet for characters that seem human is to bite
the bullet and strive to engineer characters that have what it
takes to be human. This, at least, is our strategy.

Gaming and Full-Blown Personhood
Now, there are various ways to get clearer about what gam-
ing, at least in the long-term, needs when it comes to human-
level intelligence. One way is to say simply that gaming
needs artificial creatures which, behaviorally at any rate, sat-
isfy one or more plausible proposed definitions of person-
hood in the literature. One such definition has been pro-
posed by Bringsjord in (Bringsjord 1997). This definition
essentially amounts to the view that x is a person if and only
if x has the capacity
1. to “will,” to make choices and decisions, set plans and projects

— autonomously;
2. for consciousness, for experiencing pain and sorrow and happi-

ness, and a thousand other emotions — love, passion, gratitude,
and so on;

3. for self-consciousness, for being aware of his/her states of mind,
inclinations, preferences, etc., and for grasping the concept of
him/herself;

21

4. to communicate through a language;

5. to know things and believe things, and to believe things about
what others believe, and to believe things about what others be-
lieve about one’s beliefs (and so on);

6. to desire not only particular objects and events, but also changes
in his or her character;

7. to reason (for example, in the fashion exhibited in the writing
and reading of this very paper).

Unfortunately, this list is daunting, especially if, like us,
you really and truly want to engineer a virtual person in
the short term. A large part of the problem is conscious-
ness, which we still don’t know how to represent in third-
person machine terms (Bringsjord 1998; Bringsjord 2001).
But even if we leave aside consciousness, the rest of the
attributes in the above list make for mighty tough chal-
lenges. In the section “Making the Challenge of Person-
hood Tractable” we shall retreat from this list to someting
doable in the near term, guided by particular scenarios that
make natural homes for E. But in the end, whatever appears
on this list is an engineering target for us; in the long term
we must confront each clause. Accordingly, in the section
“How Does E Talk?” we explain how we are shooting for
clause 4, communication. We have made progress on some
of the other clauses, but there is insufficient space to present
that progress herein. Clause 5 is one we believe we have
pretty much satisfied, via the formalization and implemen-
tation given in (Arkoudas & Bringsjord 2005).2

Current State of the Art versus Computational
Persons

Synthetic Characters in Gaming
What’s being done now in gaming, relative to full-blown
personhood, is clearly inadequate; this can be quickly seen
by turning to some standard work: Figure 1 shows an array
of synthetic characters from the gaming domain; these will
be familiar to many readers.3

None of these creatures has anything close to the distin-
guishing features of personhood. Sustained treatments of
synthetic characters and how to build them are similarly lim-
ited. For example, consider Figure 2, taken from (Cham-
pandard 2003).4 As a mere FSA, there is no knowledge and
belief, no reasoning, no declarative memories, and no lin-
guistic capacity. In short, and this is perhaps a better way of

2A preprint is available online at
http://kryten.mm.rpi.edu/arkoudas.bringsjord.clima.crc.pdf.

3Worst to best, in our eyes: Top-left, The Legend of Zelda; SC
spits text upon entering room. Top-right, Chrono Trigger; tree-
branching conversations. Middle-left, Might & Magic VI (Shop-
keepers). Middle-right, Superfly Johnson from Daikatana; behav-
ior scripting, attempts to follow player and act as a sidekick (fails!).
Bottom-left, Galatea – Interactive Fiction award winner for Best
NPC of 2000 (text-based). Bottom-right, Sims 2. But even here,
nothing like what our RASCALS architecture has is present.

4This is an excellent book, and it’s used in our lab for building
synthetic characters. But relative to the loftier goals of reaching
bona fide personhood in artificial characters, there’s clearly a lot of
work to be done.

putting the overall problem infecting todays’s virtual char-
acters, all of the cognitive capacities that distinguish human
persons, according to the science of cognition (e.g., (Gold-
stein 2005)), are missing. Even the state of the art using cog-
nitive architectures (e.g., SOAR) is primitive when stacked
against full-blown personhood (Ritter et al. June 2002).

Figure 1: Sample Synthetic Characters

What About Synthetic Characters in Cutting Edge
Research?
What about research-grade work on synthetic characters?
Many researchers are working on synthetic characters, and
have produced some truly impressive systems. However,
all such systems, however much they appear to be human
persons, aren’t. We now consider three examples of such
work, and show in each that the character architectures
don’t have the underlying cognitive content that is necessary
for personhood.

REA
An agent developed by (Cassell et al. 1999) known as REA
is an example of a successful, robust agent whose developers
focused primarily on embodied conversation and the conver-
sational interface. She is described as being an expert in the
domain of real estate, and interactions with REA are both
believable and informative.

REA, however, is representative of many of the indus-
try’s most successful agents in that she excels at content
management, but fails to deliver rich emotive and cognitive
functionality. REA, after all, cannot generate English from
arbitrary underlying knowledge. Like many of her peers,
REA’s underlying cognitive capabilities are modeled in
an ad-hoc fashion. Her personality is in no way defined;
her interactions within a particular situation lack subtlety
and depth. While she excels as a simulated character and
a conversational agent, she is bereft of the rich cognitive
content with which advanced synthetic characters must

22

Stimuli

Moods

Emotions

Mannerisms

Sensations
Feelings

Memories

Figure 2: Impoverished Formalism for Synthetic Characters

behave.

The BEAT Architecture
In an engaging paper by (Gratch et al. 2002), an architecture
is presented for developing rich synthetic characters. This
architecture is known as the Behavior Expression Anima-
tion Toolkit Text-to-Nonverbal Behavior Module (BEAT).
Under this architecture, emotion and cognitive content are
produced systematically in a simulation-based approach.

Their simulation-based approach is built on top of ap-
praisal theories of emotion, where emotions emerge from
analysis of events and objects in a particular domain with
respect to the agent’s goals, standards, and attitudes. But as
Gratch et al. themselves point out, appraisal theories “are
rather vague about the assessment process...A promising
line of research is integrating AI-based planning approaches,
which might lead to a concretization of such theories.” We
will present the RASCALS paradigm as one that utilizes pre-
cisely the AI-based planning techniques Gratch et al. regard
as promising.

Unfortunately, while Gratch et. al make wonderful ad-
vancements in the logistics of realizing agents, the issue of
developing rich underlying cognitive content is eschewed.
Even assuming that their simulation-based approach utilizes
robust AI-based planning, the focus is not on developing
true cognitive content but rather on its simulation and
modeling.

Believable Interactive Embodied Agents
An approach more focused on building believable characters
was proposed by (Pelachaud & Poggi 2002). They argue that

research should include three distinct phases:
• Phase 1: Empirical Research. This phase involves research

“aimed at finding out the regularities in the mind and behavior
of Human Agents, and at constructing models of them.”

• Phase 2: Modeling Believable Interactive Embodied Agents.
Here, “rules are formalized, represented, and implemented in
the construction of Agents.”

• Phase 3: Evaluation. Finally, agents are tested on several levels,
including “how well they fit the User’s needs and how similar
they look to a real Human Agent.”

The “rule formalization” characterized in Phase 2 is, as
Pelachaud and Poggi point out, indispensable when building
believable characters. Since such rule formalizations are all
expressible in first-order logic, their approach is actually a
proper subset of the RASCALS approach. But formalizing
and implementing rules is not enough to achieve true cog-
nition; after all, cognition involves much more than simple
rules/first-order logic. Iterated beliefs are beyond the reach
of first-order logic. Finally, while Pelachaud and Poggi elab-
orate on linguistic rules and formalizations, they fail to men-
tion anything about modeling cognition or interacting with a
given knowledge base, and they make no remarks concern-
ing the logistics behind rule formalization and implementa-
tion. The agents described therein all possess rudimentary
cognitive content but come nowhere close to true cognitive
or emotive capacity.

Making the Challenge of Personhood
Tractable

How can we make the challenge of engineering a virtual
person tractable in the very short term? Our lab has a two-
part answer. First, assimilate everything out there regarding
the craft of making viewers and users believe that the syn-
thetic character they interact with is a genuine person. This
is the same route that was followed by Bringsjord and Fer-
rucci in the design of the BRUTUS story generation system
(Bringsjord & Ferrucci 2000). In a nutshell, B&F studied
the literature on what responses are desired in readers by
clever authors, and then reverse engineered back from these
responses to a story generation system that triggers some of
them. In connection with synthetic characters, this general
strategy has impelled us to build up a large library on the
design of synthetic charaters in stories and movies. In ad-
dition, we have built up a library of characters in film —
specifically one that specializes in candidates for true evil.
Within the space we have herein, however, this general strat-
egy, and the results so far obtained, can’t be presented. So
we will settle here for a shortcut; it’s the second part of our
two-part answer. The shortcut is to work from concrete sce-
narios backwards by reverse engineering. We currently have
two detailed scenarios under development. One is based on
the evil people whose personalities are revealed in conversa-
tions in (Peck 1983); we leave this one aside for now. The
second scenario, which is part of R&D undertaken in the
area of wargaming, can be summarized as follows. (At the
conference, we would provide a demo of conversation with
E regarding both these scenarios, where that conversation

23

conforms to our account of evil; see On our Formal Account
of Evil.)

E in Scenario 2, and Inference Therefrom
Let us imagine a man named simply E, a brutal warlord in
a war-torn country. E is someone you’re going to have to
vanquish. He has moved up the ranks of the underworld
in post-apocalyptic America after “success” in many, many
murderous missions. E has taken a number of prisoners from
an organization (let’s call it simply O) he seeks to intimidate.
O is chosen specifically because it is trying to rebuild the
fractured US in the direction of a new federal governing5.
Conforming to what has unfortunately become a gruesome
pattern, E decides to film the beheading of one of these poor
prisoners, and to release the video to O.

Given just this small amount of information, what can we
infer about E’s knowledge and reasoning? That it has at least
the following six attributes:

1. Mixed Representation. E’s knowledge is not simply linguistic
or symbolic in nature. It includes visual or pictorial knowledge
as well. For example, E clearly is thinking in terms of mental
images, because he plans to gain leverage from the release of
images and video. In addition, though it isn’t pleasant to con-
template, E certainly has a “mental movie” that he knows he can
turn into real life: he envisions how such executions work before
performing them.

2. Tapestried. Presumably E’s knowledge of his prisoners is rel-
atively new. But this new knowledge is woven together with
extensive prior knowledge and belief. For example, in E’s case,
he has extensive knowledge of O, and its principles regarding
treatment of prisoners.

3. Extreme Expressivity. E’s knowledge and reasoning requires
highly expressive propositions. For example, he believes that O
believes that it is universally forbidden to execute prisoners, and
he believes that some of those aiding the United States’ rebuild-
ing effort will be struck with fear once the execution is complete
and suitably publicized, and that that fear will affect their beliefs
about what they should and shouldn’t do.

4. Mixed Inference Types. E’s reasoning is based not only on de-
ductive inference, but also on educated guesses (abduction), and
probabilistic inference (induction).

5. Uses Natural Language. E communicates in natural language,
with his comrades, and with others as well.

6. Multi-Agent Reasoning. E is of course working in coordinated
fashion with a number of accomplices, and to be effective, they
must reason well as a group.

Working within the paradigm of logic-based AI (Bringsjord
& Ferrucci 1998a; Bringsjord & Ferrucci 1998b; Nilsson
1991; Genesereth & Nilsson 1987), and using the MARMML
knowledge representation and reasoning system, which is
based on: the theory known as mental metalogic (Yang
& Johnson-Laird 2000a; Yang & Johnson-Laird 2000b;
Yang & Bringsjord 2005; Rinella, Bringsjord, & Yang 2001;
Yang & Bringsjord 2001a; Yang & Bringsjord 2001b; Yang,
Braine, & O’Brien 1998), the Denotational Proof Language

5Coincidentally, we have recently learned that the game Shat-
tered World for the X Box is related to our scenario.

known as Athena (Arkoudas 2000), Barwisean grids for di-
agrammatic knowledge and reasoning (see the mathemati-
cal section of (Barwise & Etchemendy 1995)), and RAS-
CALS6(see Figure 3), a revolutionary architecture for syn-
thetic characters, we are building a virtual version of E that
has the six attributes above.

Figure 3: RASCALS: Rensselaer Advanced Synthetic
Character Architecture for Logical Systems

Brief Remarks on the RASCALS Architecture
Let us say a few words about RASCALS, a brand new en-
try in the field of compuational cognitive modeling, which
revolves around what are called cognitive architectures
(e.g., SOAR (Rosenbloom, Laird, & Newell 1993); ACT-
R (Anderson 1993; Anderson & Lebiere 1998; Anderson &
Lebiere 2003); CLARION (Sun 2001); Polyscheme (Cas-
simatis 2002; Cassimatis et al. 2004)). What makes the
RASCALS cognitive architecture distinctive? There is in-
sufficient space here to convey any technical detail (for more
details, see (Bringsjord forthcoming)); we make just three
quick points about RASCALS, to wit:

• All other cognitive architectures we know of fall far short
of the expressive power of RASCALS. For example,
SOAR and ACT-R struggle to represent (let alone reason
quickly over) textbook problems in logic (e.g., the Wise
Man Problem = WMP) but in RASCALS such representa-
tions are effortless (see (Arkoudas & Bringsjord 2005) for
the solution to WMP in Athena, included in RASCALS).

• The great challenge driving the field of computational
cognitive modeling (CCM) is to unify all of human cogni-
tion; this challenge can be traced back to the birth of CCM
in the work of Newell 1973. Such unification is achieved
in one fell swoop by RASCALS, because all of cognition

6Rensselaer Advanced Synthetic Character Architecture for
Logical Systems

24

can be formalized and mechanized in logic (though do-
ing so requires some very complicated logics well beyond
first-order logic, as in (Arkoudas & Bringsjord 2005)).

• While logic has been criticized as too slow for real-time
perception-and-action-heavy computation, as you might
see in first-person shooter (as opposed to a strategy game,
which for obvious reasons fits nicely with the paradigm of
logic-based AI), it has been shown that RASCALS is so
fast that it can enable the real-time behavior of a mobile
robot. We have shown this by having a logic-based mobile
robot successfully navigate the wumpus world game, a
staple in AI. (See Figures 4 and 5.)

Figure 4: The Wumpus World Game

Figure 5: Performance of a RASCALS-Powered Robot in
the Wumpus World

To show part of the underlying structure of E in con-
nection with the attribute Extreme Expressivity, we now
present an informal version of the formal account of evil

that is implemented in our RASCALS architecture. This ac-
count specifically requires logics expressive enough to han-
dle knowledge, belief, and ethical concepts. These logics go
well beyond first-order logic; details and an implementation
can be found in (Arkoudas & Bringsjord 2005). In the sec-
tion “E: The Presentation Level” we explain the technology
that allows E to speak naturally in English; that is, we show
there part of the underlying structure of E associated with
Uses Natural Language.

On our Formal Account of Evil
If we charitably push things in the direction of formally rep-
resenting a definition of evil,7 then we can understand Fein-
berg 2003 as advancing pretty much this definition:

Def 1 Person s is evil iff there exists some action a8 such that
1. performing a is morally wrong;
2. s is morally blameworthy for performing a;
3. s’s performing a causes considerable harm to others; and
4. the reasons or motives for s’s performing a, along with

“the elements that ground her moral blameworthiness,”
are unintelligible.

This is a decent starting place, but for us there are prob-
lems. For example, imagine that E invariably fails to cause
actual harm. Surely he would still qualify as evil even
if he were a bumbling villain. (If the knife slipped when
he attempted decapitation, he would still be just as black-
hearted.) This means that clause 3 should at least be replaced
by

3′. s performs a in the hopes of causing considerable harm
to others

But even this new definition, for reasons we don’t have
space to explain, is wholly inadequate. To give just a flavor
for what E is currently based upon, we present simply our
current best replacement for clause 4:

4′′ were s a willing and open participant in the analysis of
reasons and motives for s’s seeking to perform a, it would
be revealed that either
(i) these reasons and motives are unintelligible, or
(ii) s seeks to perform a in the service of goal g, and

(a) the anticipatable side-effects e of performing a are
bad, but s cannot grasp this, or

(b) g itself is appraised as good by s when it is in fact
bad.

Just this clause alone required much sustained analysis. (For
a full chronicle of the evolution of a formally refined defini-
tion of betrayal from a rough starting one, see the chapter
“Betrayal” in (Bringsjord & Ferrucci 2000).)

Keep in mind that this is still informal, kept that way in the
interests of easing exposition. In the RASCALS-based im-
plementation of E, evil must be expressed in purely formal
form, which requires, again, that we use advanced logics of
belief, knowledge, and obligation.9

7Feinberg’s work is informal, and not suitable for direct use in
AI and computer science.

8Or omission.
9For a look at the deontic logic (i.e., the logic of ethical con-

cepts) we are relying upon, see (Horty 2001). Our mechanization

25

Keep in mind as well that we’re not claiming that we have
the perfect definition of evil. Some may object to our defi-
nition, and some of their objections may be trenchant. But
the important point is to see how rich evil is — to see that it
involves all kinds of highly cognitive powers and concepts
that simply aren’t found in today’s synthetic characters. To
be evil, one has to have beliefs, desires, and one has to have
a lot of knowledge. The detailed configuration of these el-
ements may not be exactly as we claim they ought to be,
but no one can deny that the elements are needed. Without
them, a synthetic character who is supposed to be evil is only
a fake shell. And in the end, the shell will be revealed to be
a shell: the illusion, at some point, will break down.

How Does E Talk?
As everyone knows, once the daunting challenge of render-
ing consciousness in computational terms is put aside, the
greatest remaining challenge is that of giving an advanced
synthetic character the power to communicate in a natural
language (English, French, etc.) at the level of a human per-
son. As you’ll recall, communicative capacity is one of the
clauses in the definition of personhood presented above. A
plausible synthetic character must necessarily communicate
in a fluid, robust manner. How, then, is such a rich form of
communication implemented in E?

Reconciling Knowledge Representation and NLG
E speaks by parsing and processing formal knowledge; he
develops an ontology based on internal and external queries,
and then reasons over his knowledge to produce meaningful
content. This content is then sent to his NLG module, trans-
lated into English, and finally presented to the user. Before
we examine what goes on inside E’s NLG module, let’s take
a moment to examine how E produces “meaningful content.”

When we ask E a question, we are clearly interested in
an answer that is both relevant and meaningful, an answer
indistinguishable from those given by a real person. Assum-
ing we have incomplete knowledge, suppose we ask of E,
“Is John dangerous?” E approaches this question through
formal logical analysis. The idea is to have E determine
incontrovertibly whether John is dangerous or not. So, for
instance, suppose E’s knowledge base includes the follow-
ing three facts:
1. DANGEROUS PEOPLE HAVE AUTOMATIC WEAPONS.

2. JOHN HAS A BERETTA AR-70 ASSAULT RIFLE.

3. THE BERETTA AR-70 ASSAULT RIFLE IS AN

AUTOMATIC WEAPON.

None of the information above explicitly tells E whether
John is dangerous or not, but clearly, when presented
the above query, we want E to answer with an emphatic
“Yes.” Still, the answer itself is not enough. To ensure
that E understands the nature of the question as well as
the information he is dealing with, he must, upon request,
provide a justification for every answer. The justification

of this this logic will be presented at the AAAI November 2005
Fall Symposium on Machine Ethics. The paper is available online
at http://kryten.mm.rpi.edu/FS605ArkoudasAndBringsjord.pdf.

presented to the user is a formal proof, translated into
English. Thus, E could answer as follows:

JOHN IS IN FACT DANGEROUS BECAUSE HE HAS

A BERETTA AR-70 ASSAULT RIFLE. SINCE A

BERETTA AR-70 ASSAULT RIFLE IS AN AUTOMATIC

WEAPON, AND SINCE DANGEROUS PEOPLE HAVE

AUTOMATIC WEAPONS, IT FOLLOWS THAT JOHN IS

DANGEROUS.

Content is thus generated in the form of a formal proof. In
general, the proofs generated will be more complex (they
will use larger knowledge bases) and more sophisticated
(they will use deontic and epistemic logic).

While the example is simple and rudimentary (that is, it
makes use of only first-order logic and a small knowledge
base), it demonstrates that E is taking heed of his knowledge
to generate a meaningful reply. In the RASCALS architec-
ture, answering “Yes” to the query above implies that E must
in fact have the corresponding knowledge, an implication
that does not hold for other architectures.

For a more formal method of analysis, we introduce
the “Knowledge Code Test”: If synthetic character C says
something X or does something X designed to evoke in
the mind of the human gamer/user the belief that C knows
P1, P2, . . ., then we should find a list of formulas, or the
equivalent, corresponding to P1, P2, . . . in the code itself.
The characters in Figure 1 would fail such a test, as would
characters built on the basis of Champandard’s specifica-
tions. An FSA, as a matter of mathematical fact, has no
storage capability. A system with power that matches that of
a full Turing machine is needed to pass the Knowledge Code
Test (Lewis & Papadimitriou 1981).

But formal proofs are oftentimes too detailed to be of in-
terest. Before we can even begin translating a proof into
an English justification, we need verify that its level of ab-
straction is high enough that it is easy to read and under-
stand. After all, formal natural deduction proofs are difficult
and tedious to read. To represent proofs at a more wholis-
tic, abstract level, we utilize the denotational proof language
known as Athena (Arkoudas 2000). Athena is a program-
ming language, development environment, and interactive
proof system that evaluates and processes proofs as input.
Its most prominent feature is its ability to present proofs in
an abstract, top-level manner, isomorphic to that of a natu-
ral argument a human might use. By developing proofs in
Athena at this level, a level high enough to be of interest to
a human reader, we can be sure that the language generated
from our NLG module is at precisely the level of abstraction
we desire — neither too detailed nor too amorphous.

It’s now time to look at precisely how English is generated
from a formal proof.

Proof-based Natural Language Generation
Very few researchers are experimenting with the rigorous
translation of formal proofs into natural language10. This is

10An example of one such team is a research group at the Uni-
versity of Saarlande. The group had, until 1997, been developing

26

particularly odd when one considers the benefits of such a
program. Natural deduction proofs, provided that they are
developed in a sensible manner, are already poised for ef-
ficient translation. They require absolutely no further doc-
ument structuring or content determination. That is, docu-
ment planning, as defined by (Reiter & Dale 2000), is com-
pletely taken care of by using formal proofs in the first place.

Our NLG module receives as input a formal proof and re-
turns as output English text. The English generated is an
isomorph of the proof received. The structure of the justi-
fication, then, is precisely the same as the structure of the
proof. If the justification uses reductio ad absurdum in the
middle of the exposition, then you can be sure that there’s a
proof by contradiction in the middle of the formal proof.

Formal proofs are constructed from various different sub-
proofs. A proof by contradiction is one such example of
a type of subproof, but there are of course many others.
Our system breaks a proof down to its constituent subproofs,
translating each subproof from the top down. For example,
assume the following:
1. CHICAGO IS A TARGET OR NEW YORK IS A

TARGET

2. IF CHICAGO IS A TARGET, MILLIONS WILL DIE.

3. IF NEW YORK IS A TARGET, MILLIONS WILL

DIE.

To deduce something meaningful from this information,
we’ll use a proof by cases. Our system translates this proof
form as follows:

RECALL THAT CHICAGO OR NEW YORK IS A TARGET.
EACH CASE PRODUCES THE SAME CONCLUSION; THAT

IS, IF CHICAGO IS A TARGET THEN MILLIONS

WILL DIE, AND IF NEW YORK IS A TARGET THEN

MILLIONS WILL DIE. IT FOLLOWS THAT MILLIONS

WILL DIE.

Predictably, documents produced in this manner, even
when presented at a level abstract enough to make sense
to a layperson, are rigid and, well, inhuman. They use the
same phrases over and over again, they lack fluidity, and
they are completely divorced of grace and wit. To boot,
they disregard contextual information. Merely translating
constituent subproofs to English will not produce natural
English.

Nevertheless, this methodology provides a foundation for
more sophisticated development. Once constituent sub-
proofs are translated properly, they are sent to a microplan-
ning system that maps particular subproofs to discourse rela-
tions (Hovy 1993). This mapping is known as a message and
is not isomorphic. While the structure of the overall proof
is preserved in the final document, individual subproofs are
not treated with the same stringency. They can be molded
and fitted to a number of different discourse relations for the
sake of fluidity. Two more steps remain before natural lan-
guage can be produced.

a system called PROVERB (Huang & Fiedler 1997). Their ap-
proach to proof-based translation was unique and extremely influ-
ential, though their project was largely unsuccessful.

Lexicalization is the process by which a lexicon of
words is selected and mapped onto its symbolic coun-
terparts. The content implicit in the proof, structured
through subproof analysis and discourse relations, needs
to be lexicalized before it can be presented as English
text. That is, exact words and phrases must be chosen
to represent relationships and predicates. For instance,
TARGET(CHICAGO) must be translated to CHICAGO IS
A TARGET and BERETTA(JOHN) must be translated to
JOHN HAS A BERETTA before we can move on to glu-
ing everything together. The only way this can happen is
if a lexical database such as WordNet (Miller 1995) is aug-
mented with domain-specific lexicalizations such as those
specifying how to lexicalize “Beretta AR-70.”

For even more fluidity, it’s necessary to avoid referring to
the same entities with the same phraseology. At the very
least, pronouns should be substituted when referring to re-
peated concepts, persons, places, and objects. These substi-
tutions are known as referring expressions, and need to be
generated to truly produce fluid, humanlike English.

Fortunately, once the above issues are resolved, the infor-
mation gathered therein can be plugged easily into a surface
realizer such as KPML (Bateman 1997). In this fashion,
proof-based NLG allows for the generation of both struc-
tured and expressive expositions.

E: The Presentation Level
To concretize our representation of evil (as in demos, e.g.;
see the final section of the paper), we show E; a realistic real-
time presentation of an evil talking head in the formal sense.
In order to give E a realistic look, a range of facial expres-
sions, and a flexible response to input, we simulate a subset
of the muscles in the face. Each muscle in our model can
contract, perturbing the underlying triangle mesh. Our sim-
ulation is based largely on that presented in (Waters 1987)
and we have taken the approach of implementing the model
almost entirely in a vertex shader. A parameterization for
the tongue similiar to (King 2001) is used. A module for
eye movements implements ideas presented in (Lee, Badler,
& Badler 2002). Finally, we simulate subsurface scatter-
ing on the skin using the algorithm of (Sander, Gosselin, &
Mitchell 2004). Our tool is shown in Figure 6.

Our Demos @ GameOn!
As mentioned above, at the conference we will allow atten-
dees to discuss with E the two aforementioned scenarios,
and this interaction will show our approach to the presen-
tation level in action, and will manifest our formal account
of evil in ordinary conversation that is based on our NLG
technology.

References
[Anderson & Lebiere 1998] Anderson, J. R., and Lebiere, C.

1998. The Atomic Components of Thought. Mahwah, NJ:
Lawrence Erlbaum.

[Anderson & Lebiere 2003] Anderson, J., and Lebiere, C. 2003.
The newell test for a theory of cognition. Behavioral and Brain
Sciences 26:587–640.

27

Figure 6: Tool for Manipulating Facial Muscles on E

[Anderson 1993] Anderson, J. R. 1993. Rules of Mind. Hillsdale,
NJ: Lawrence Erlbaum.

[Arkoudas & Bringsjord 2005] Arkoudas, K., and Bringsjord, S.
2005. Metareasoning for multi-agent epistemic logics. In Fifth
International Conference on Computational Logic In Multi-Agent
Systems (CLIMA 2004), volume 3487 of Lecture Notes in Artifi-
cial Intelligence (LNAI). New York: Springer-Verlag. 111–125.

[Arkoudas 2000] Arkoudas, K. 2000. Denotational Proof Lan-
guages. Ph.D. Dissertation, MIT.

[Barwise & Etchemendy 1995] Barwise, J., and Etchemendy, J.
1995. Heterogeneous logic. In Glasgow, J.; Narayanan, N.; and
Chandrasekaran, B., eds., Diagrammatic Reasoning: Cognitive
and Computational Perspectives. Cambridge, MA: MIT Press.
211–234.

[Bateman 1997] Bateman, J. A. 1997. Enabling technology for
multilingual natural language generation: the kpml development
environment. Nat. Lang. Eng. 3(1):15–55.

[Bringsjord & Ferrucci 1998a] Bringsjord, S., and Ferrucci, D.
1998a. Logic and artificial intelligence: Divorced, still married,
separated...? Minds and Machines 8:273–308.

[Bringsjord & Ferrucci 1998b] Bringsjord, S., and Ferrucci, D.
1998b. Reply to Thayse and Glymour on logic and artificial in-
telligence. Minds and Machines 8:313–315.

[Bringsjord & Ferrucci 2000] Bringsjord, S., and Ferrucci, D.
2000. Artificial Intelligence and Literary Creativity: Inside the
Mind of Brutus, a Storytelling Machine. Mahwah, NJ: Lawrence
Erlbaum.

[Bringsjord 1997] Bringsjord, S. 1997. Abortion: A Dialogue.
Indianapolis, IN: Hackett.

[Bringsjord 1998] Bringsjord, S. 1998. Chess is too easy. Tech-
nology Review 101(2):23–28.

[Bringsjord 2001] Bringsjord, S. 2001. Is it possible to build
dramatically compelling interactive digital entertainment (in the
form, e.g., of computer games)? Game Studies 1(1). This is the
inaugural issue. Url: http://www.gamestudies.org.

[Bringsjord forthcoming] Bringsjord, S. forthcoming. The RAS-
CALS cognitive architecture: Logic top to bottom. In Sun, R.,
ed., The Handbook of Computational Cognitive Modeling. Cam-
bridge University Press.

[Cassell et al. 1999] Cassell, J.; Bickmore, T.; Billinghurst, M.;

Campbell, L.; Chang, K.; Vilhjalmsson, H.; and Yan, H. 1999.
Embodiment in conversational interfaces: Rea. In CHI ’99: Pro-
ceedings of the SIGCHI conference on Human factors in comput-
ing systems, 520–527. New York, NY, USA: ACM Press.

[Cassimatis et al. 2004] Cassimatis, N.; Trafton, J.; Schultz, A.;
and Bugajska, M. 2004. Integrating cognition, perception and
action through mental simulation in robots. In Proceedings of the
2004 AAAI Spring Symposium on Knowledge Representation and
Ontology for Autonomous Systems.

[Cassimatis 2002] Cassimatis, N. 2002. Polyscheme: A Cogni-
tive Architecture for Integrating Multiple Representation and In-
ference Schemes. Ph.D. Dissertation, Massachusetts Institute of
Technology (MIT).

[Champandard 2003] Champandard, A. 2003. AI Game Develop-
ment. Berkeley, CA: New Riders.

[Electronic Arts Inc. 2000] Electronic Arts Inc. 2000. The
SimsTM : The People Simulator from the Creator of SimCityTM .
Austin, TX: Aspyr Media.

[Feinberg 2003] Feinberg, J. 2003. Problems at the Roots of Law.
New York, NY: Oxford University Press.

[Genesereth & Nilsson 1987] Genesereth, M., and Nilsson, N.
1987. Logical Foundations of Artificial Intelligence. Los Altos,
CA: Morgan Kaufmann.

[Goldstein 2005] Goldstein, E. B. 2005. Cognitive Psychology:
Connecting Mind, Research, and Everyday Experience. Belmont,
CA: Wadsworth.

[Gratch et al. 2002] Gratch, J.; Rickel, J.; Andre, E.; Cassell, J.;
Petajan, E.; and Badler, N. 2002. Creating interactive virtual
humans: Some assembly required. IEEE Intelligent Systems
17(4):54–63.

[Horty 2001] Horty, J. 2001. Agency and Deontic Logic. New
York, NY: Oxford University Press.

[Hovy 1993] Hovy, E. H. 1993. Automated discourse generation
using discourse structure relations. Artif. Intell. 63(1-2):341–385.

[Huang & Fiedler 1997] Huang, X., and Fiedler, A. 1997. Proof
verbalization as an application of NLG. In Pollack, M. E., ed.,
Proceedings of the 15th International Joint Conference on Ar-
tificial Intelligence (IJCAI), 965–970. Nagoya, Japan: Morgan
Kaufmann.

[King 2001] King, S. A. 2001. A Facial Model and Animation
Techniques for Animated Speech. Ph.D. Dissertation, Ohio State
University.

[Lee, Badler, & Badler 2002] Lee, S. P.; Badler, J. B.; and Badler,
N. I. 2002. Eyes alive. ACM Transactions on Graphics
21(3):637–644.

[Lewis & Papadimitriou 1981] Lewis, H., and Papadimitriou, C.
1981. Elements of the Theory of Computation. Englewood Cliffs,
NJ: Prentice Hall.

[Miller 1995] Miller, G. A. 1995. Wordnet: a lexical database for
english. Commun. ACM 38(11):39–41.

[Newell 1973] Newell, A. 1973. You can’t play 20 questions with
nature and win: Projective comments on the papers of this sym-
posium. In Chase, W., ed., Visual Information Processing. New
York: Academic Press. 283–308.

[Nilsson 1991] Nilsson, N. 1991. Logic and Artificial Intelli-
gence. Artificial Intelligence 47:31–56.

[Peck 1983] Peck, M. S. 1983. People of the Lie. New York, NY:
Simon and Shuster.

[Pelachaud & Poggi 2002] Pelachaud, C., and Poggi, I. 2002.
Multimodal embodied agents. Knowl. Eng. Rev. 17(2):181–196.

28

[Reiter & Dale 2000] Reiter, E., and Dale, R. 2000. Building nat-
ural language generation systems. New York, NY, USA: Cam-
bridge University Press.

[Rinella, Bringsjord, & Yang 2001] Rinella, K.; Bringsjord, S.;
and Yang, Y. 2001. Efficacious logic instruction: People are
not irremediably poor deductive reasoners. In Moore, J. D., and
Stenning, K., eds., Proceedings of the Twenty-Third Annual Con-
ference of the Cognitive Science Society. Mahwah, NJ: Lawrence
Erlbaum Associates. 851–856.

[Ritter et al. June 2002] Ritter, F.; Shadbolt, N.; Elliman, D.;
Young, R.; Gobet, F.; and Baxter, G. June 2002. Techniques
for modeling human performance in synthetic environments: A
supplementary review. Technical report, Human Systems Infor-
mation Analysis Center, Wright-Patterson Air Force Base, OH.

[Rosenbloom, Laird, & Newell 1993] Rosenbloom, P.; Laird, J.;
and Newell, A., eds. 1993. The Soar Papers: Research on In-
tegrated Intelligence. Cambridge, MA: MIT Press.

[Sander, Gosselin, & Mitchell 2004] Sander, P. V.; Gosselin, D.;
and Mitchell, J. L. 2004. Real-time skin rendering on graphics
hardware. In Proceedings of ACM SIGGRAPH.

[Sun 2001] Sun, R. 2001. Duality of the Mind. Mahwah, NJ:
Lawrence Erlbaum Associates.

[Waters 1987] Waters, K. 1987. A muscle model for animating
three-dimensional facial expression. In Proceedings of ACM SIG-
GRAPH, volume 21, 17–24.

[Yang & Bringsjord 2001a] Yang, Y., and Bringsjord, S. 2001a.
Mental metalogic: A new paradigm for psychology of reasoning.
In Proceedings of the Third International Conference on Cogni-
tive Science (ICCS 2001). Hefei, China: Press of the University
of Science and Technology of China. 199–204.

[Yang & Bringsjord 2001b] Yang, Y., and Bringsjord, S. 2001b.
The mental possible worlds mechanism: A new method for ana-
lyzing logical reasoning problems on the gre. In Proceedings of
the Third International Conference on Cognitive Science (ICCS
2001). Hefei, China: Press of the University of Science and Tech-
nology of China. 205–210.

[Yang & Bringsjord 2005] Yang, Y., and Bringsjord, S. 2005.
Mental Metalogic: A New, Unifying Theory of Human and Ma-
chine Reasoning. Mahway, NJ: Erlbaum.

[Yang & Johnson-Laird 2000a] Yang, Y., and Johnson-Laird, P. N.
2000a. How to eliminate illusions in quantified reasoning. Mem-
ory and Cognition 28(6):1050–1059.

[Yang & Johnson-Laird 2000b] Yang, Y., and Johnson-Laird,
P. N. 2000b. Illusory inferences with quantified assertions. Mem-
ory and Cognition 28(3):452–465.

[Yang, Braine, & O’Brien 1998] Yang, Y.; Braine, M.; and
O’Brien, D. 1998. Some empirical justification of one predicate-
logic model. In Braine, M., and O’Brien, D., eds., Mental Logic.
Mahwah, NJ: Lawrence Erlbaum Associates. 333–365.

29

Toward Ethical Robots via Mechanized Deontic Logic∗

Konstantine Arkoudas and Selmer Bringsjord
Rensselaer AI & Reasoning (RAIR) Lab

Department of Cognitive Science
Department of Computer Science

Rensselaer Polytechnic Institute (RPI)
Troy NY 12180 USA

{arkouk ,selmer }@rpi.edu

Paul Bello
Air Force Research Laboratory

Information Directorate
525 Brooks Rd.

Rome NY 13441-4515
Paul.Bello@rl.af.mil

Abstract

We suggest that mechanized multi-agent deontic logics might
be appropriate vehicles for engineering trustworthy robots.
Mechanically checked proofs in such logics can serve to es-
tablish the permissibility (or obligatoriness) of agent actions,
and such proofs, when translated into English, can also ex-
plain the rationale behind those actions. We use the logical
framework Athena to encode a natural deduction system for a
deontic logic recently proposed by Horty for reasoning about
what agents ought to do. We present the syntax and seman-
tics of the logic, discuss its encoding in Athena, and illustrate
with an example of a mechanized proof.

Introduction
As machines assume an increasingly prominent role in our
lives, there is little doubt that they will eventually be called
upon to make important, ethically charged decisions. How
can we trust that such decisions will be made on sound ethi-
cal principles? Some have claimed that such trust is impos-
sible and that, inevitably, AI will produce robots that both
have tremendous power and behave immorally (Joy 2000).
These predictions certainly have some traction, particularly
among a public that seems bent on paying good money to see
films depicting such dark futures. But our outlook is a good
deal more optimistic. We see no reason why the future, at
least in principle, can’t be engineered to preclude doomsday
scenarios of malicious robots taking over the world.

One approach to the task of building well-behaved robots
emphasizes careful ethical reasoning based on mechanized
formal logics of action, obligation, and permissibility; that is
the approach we explore in this paper. It is a line of research
in the spirit of Leibniz’s famous dream of a universal moral
calculus (Leibniz 1984):

When controversies arise, there will be no more need
for a disputation between two philosophers than there
would be between two accountants [computistas]. It
would be enough for them to pick up their pens and sit
at their abacuses, and say to each other (perhaps having
summoned a mutual friend): ‘Let us calculate.’

∗We gratefully acknowledge that this research was in part sup-
ported by Air Force Research Labs (AFRL), Rome.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In the future we envisage, Leibniz’s “calculation” would boil
down to formal proof and/or model generation in rigorously
defined, machine-implemented logics of action and obliga-
tion.

Such logics would allow forproofsestablishing that:

1. Robots only take permissible actions; and

2. all actions that are obligatory for robots are actually per-
formed by them (subject to ties and conflicts among avail-
able actions).

Moreover, such proofs would be highly reliable (i.e., have
a very small “trusted base”), and explained in ordinary En-
glish.

Clearly, this remains largely a vision. There are many
thorny issues, not least among which are criticisms regard-
ing the practical relevance of such formal logics, efficiency
issues in their mechanization, etc.; we will discuss some of
these points shortly. Nevertheless, mechanized ethical rea-
soning remains an intriguing vision worth investigating.

Of course one could also object to the wisdom of logic-
based AI in general. While other ways of pursuing AI
may well be preferable in certain contexts, we believe that
in this case a logic-based approach (Bringsjord & Fer-
rucci 1998a; 1998b; Genesereth & Nilsson 1987; Nilsson
1991; Bringsjord, Arkoudas, & Schimanski forthcoming) is
promising because one of the central issues here is that of
trust—and mechanized formal proofs are perhaps the single
most effective tool at our disposal for establishing trust.

Deontic logic, agency, and action
In standard deontic logic (Chellas 1980; Hilpinen 2001;
Aqvist 1984), or just SDL, the formula©P can be inter-
preted as saying thatit ought to be the case that P, where
P denotes some state of affairs or proposition. Notice that
there is no agent in the picture, nor are there actions that an
agent might perform. This is a direct consequence of the
fact that SDL is derived directly from standard modal logic,
which applies the possibility and necessity operators3 and
2 to formulae standing for propositions or states of affairs.
For example, the deontic logicD∗ has one rule of inference,
viz.,

P → Q
©P →©Q

30

and three axiom schemas:

• (©P ∧©Q) →©(P ∧Q)

• ©> (≈ “That which must be is obligatory.”)

• ¬©⊥ (≈ “Nothing impossible is obligatory.”)

While D∗ has some desirable properties, it and its rela-
tives are plagued by various paradoxes (Hilpinen 2001), and,
more importantly given present purposes, these logics aren’t
targeted at formalizing the concept ofactionsbeing oblig-
atory (or permissible or forbidden) for anagent. Interest-
ingly, deontic logics that have agents and their actions in
mind do go back to the very dawn of this subfield of logic
(von Wright 1951), but only recently has an “AI-friendly”
semantics been proposed (Belnap, Perloff, & Xu 2001;
Horty 2001) and corresponding axiomatizations been inves-
tigated (Murakami 2004).

We have used the Athena logical framework (briefly dis-
cussed in the next section) to encode a natural deduction
calculus for a modern logic of agent action and obligation
developed by Horty and axiomatized by Murakami in order
to investigate mechanical deontic reasoning.

The ideal conditions for building “ethical robots” via a
logic-based approach to AI would be as follows: we would
have an expressive deontic logicL of high practical rele-
vance, and an efficient algorithm for determining theorem-
hood in L. That algorithm could then be built into the
robot (perhaps implemented directly on its hardware), and
the robot would only take an ethically charged action if it
could formally prove that the action is permissible. Unfortu-
nately, there is a legendarily strong tension between expres-
siveness and efficiency, and so it is certain that these ideal
conditions will never obtain. For expressiveness, we will
likely need highly hybrid modal and deontic logics that are
at least first-order, which means that theoremhood in such
logics will be undecidable. Even for decidable logics, such
as the zero-order version of Horty’s system1 that we present
in this paper, decision procedures are likely to be of inordi-
nate computational complexity.

Therefore, we must reconcile ourselves to the possibil-
ity that a robot might not be able by itself to pass judgment
on certain actions that it is contemplating; and that instead
of a single monolithic decision procedure for deontic the-
oremhood (or validity, assuming the logic is complete), the
robot might instead need to be armed with a knowledge base
of lemmas and a panoply oftactics, each capable of set-
tling certain restricted subclasses of deontic questions. This
might well turn out to be sufficient in practice. If and when
a complicated proposition arises that ethically paralyzes the
robot, humans could intervene to settle the situation as they
see fit. The logical framework that we have used to mech-
anize Horty’s logic, Athena (Arkoudas 2003), facilitates the
formulation of lemmas and of highly reliable tactics.

Athena
Athena (Arkoudas 2003) is a new interactive theorem prov-
ing system for polymorphic multi-sorted first-order logic

1Proved complete and decidable by Murakami (Murakami
2004).

that incorporates facilities for model generation, automated
theorem proving, and structured proof representation and
checking. It also provides a higher-order functional pro-
gramming language, and a proof abstraction mechanism for
expressing arbitrarily complicated inferencemethodsin a
way that guarantees soundness, akin to the tactics and tac-
ticals of LCF-style systems such as HOL (Gordon & Mel-
ham 1993) and Isabelle (Paulson 1994). Proof automation is
achieved in two ways: first, through user-formulated proof
methods; and second, through the seamless integration of
state-of-the-art ATPs such as Vampire (Voronkov 1995) and
Spass (Weidenbach 2001) as primitive black boxes for gen-
eral reasoning. For model generation, Athena integrates
Paradox (Claessen & Sorensson 2003), a new highly effi-
cient model finder. For proof representation and checking,
Athena uses a block-structured Fitch-style natural deduc-
tion calculus (Pelletier 1999) with novel syntactic constructs
and a formal semantics based on the abstraction ofassump-
tion bases(Arkoudas 2000). Most interestingly, a block-
structured natural deduction format is used not only for writ-
ing proofs, but also for writing tactics (methods). This is a
novel feature of Athena. Tactics in this style are consider-
ably easier to write and remarkably useful in making proofs
more modular and abstract.

Athena has been used to implement a proof-emitting op-
timizing compiler (Rinard & Marinov 1999); to integrate
model checking and theorem proving for relational reason-
ing (Arkoudaset al. 2003); to implement various “certi-
fying” algorithms (Arkoudas & Rinard 2004); to verify the
core operations of a Unix-like file system (Arkoudaset al.
2004); to prove the correctness of dataflow analyses (Hao
2002); and to reason about generic software (Musser 2004).
A concise presentation of Athena’s syntax and semantics can
be found elsewhere (Arvizo 2002).

Horty’s logic and its Athena encoding
Murakami (Murakami 2004) presents an axiomatization of
Horty’s utilitarian formulation of multi-agent deontic logic
(Horty 2001), and shows it decidable by proving that it has
the finite model property. In this section we develop an alter-
native, sequent-based natural-deduction formulation of Mu-
rakami’s system. The logic is encoded in Athena, which
is then used as a metalanguage in order to reason about
the encoded object language; we have used this methodol-
ogy successfully with other intensional logics (Arkoudas &
Bringsjord 2005). In what follows we briefly review the ab-
stract syntax and semantics of the logic, and then present our
formulation of a natural deduction system for it.

We use the lettersP , Q, R, . . ., to designate arbitrary
propositions, built according to the following abstract gram-
mar:

P ::= A | > | ⊥ | ¬P | P ∧Q | P ∨Q | P ⇒Q

| 2P | 3P | [α cstit: P] | � [α cstit: P]

where A and α range over a countable set of atomic
propositions (“atoms”) and a primitive domain ofagents,
respectively. Propositions of the form[α cstit: P] and
� [α cstit: P] are read as “α sees to it thatP ” and “α

31

Γ ` P Γ `Q [∧-I]
Γ ` P ∧Q

Γ ` P ∧Q [∧-E1]
Γ ` P

Γ ` P ∧Q [∧-E2]
Γ `Q

Γ ` P [∨-I1]
Γ ` P ∨Q

Γ `Q [∨-I2]
Γ ` P ∨Q

Γ ` P1 ∨ P2 Γ, P1 `Q Γ, P2 `Q [∨-E]
Γ `Q

Γ, P `Q [⇒-I]
Γ ` P ⇒Q

Γ ` P ⇒Q Γ ` P [⇒-E]
Γ `Q

Γ ` ¬¬P [¬-E]
Γ ` P

Γ, P ` ⊥ [¬-I]
Γ ` ¬P

Γ ` P ∧ ¬P [⊥-I]
Γ ` ⊥

[>-I]
Γ ` >

[Reflex]
Γ, P ` P

Γ ` P [Dilution]
Γ ∪ Γ′ ` P

Figure 1: Inference rules for the propositional connectives.

ought to see to it thatP ,” respectively.2 We stress that
� [α cstit: P] is not read as “It ought to be the case thatα
sees to it thatP .” That is the classic Meinong-Chisholm
“ought-to-be” analysis of agency, captured by another for-
mula altogether,© [α cstit: P], where© is the non-agent-
oriented “ought” operator similar to what is found in SDL.
In Horty’s semantics,© [α cstit: P] and� [α cstit: P] are
not equivalent statements; neither implies the other (Horty
2001). In general, the operator©, taken over from SDL, ap-
plies toP just in caseP holds in each of the best worlds. As
Horty explains, an analogue to this basic idea is expressed
by� [α cstit: P], because this locution holds wheneverP is
ensured by each of the agent’s best actions. (We have lit-
tle use for the standard obligation operator© and hence we
omit it from our formulation, although it could be easily in-
cluded.)

The formal semantics are given on the basis of the the-
ory of indeterminate branching time (Prior 1967; Thomason
1984), augmented with constructs for dealing with agent ac-
tions. The usual Kripke frames of modal logic are replaced
by deontic stit frames. A deontic stit frame has the following
components:

• A set ofmomentsM , along with a strict partial order< on

2The ‘c’ in cstit stands for “Chellas.” Horty (Horty 2001) at-
tributes the naming to the fact thatcstit is analogous—though not
identical—to an operator introduced by Brian Chellas in his 1969
doctoral dissertation (Chellas 1969). There are other stit operators
in the literature, e.g., the achievement stit (“astit”), the deliberative
stit (“dstit”), etc.

M (i.e., < is irreflexive and transitive, and hence asym-
metric as well). A maximal linearly ordered subset ofM
is called ahistory. The set of all histories containing a
momentm ∈ M is written asHm.

• A setA of agents.

• A binary functionChoicethat maps any given agentα and
momentm into a partitionChoice(α, m) of Hm. This
function must satisfy two constraints:independence of
agents, andno choice between undivided histories; see
(Horty 2001) for details.

• For eachm ∈ M , a utility function Vm from Hm into
some partially ordered set of values (typically the real
numbers).
The semantics are given with respect to moment/history

pairs. Specifically, adeontic stit modelis a deontic stit frame
along with a truth valuation that maps each pair〈m,h〉 with
m ∈ M,h ∈ Hm into a subset of atomic propositions (intu-
itively, these are the atoms that are true at the index〈m,h〉).
Given a deontic stit modelM and a moment/history pair
〈m,h〉 (with h ∈ Hm), we writeM |=〈m,h〉 P to mean

thatM satisfies propositionP at index〈m,h〉. The defini-
tion of M |=〈m,h〉 P is given by induction on the struc-

ture of P . The cases of atoms and propositional combina-
tions are standard. Cstit propositions are handled as follows:
M |=〈m,h〉 [α cstit: P] iff

M |=〈m,h′〉 P

for everyh′ ∈ block(m,α, h), whereblock(m,α, h) is the
unique block (equivalence class) containingh in the parti-
tion Choice(α, m) of Hm. We refer the reader to (Horty
2001) for the semantics of� [α cstit: P].

A sequentΓ ` P consists of a contextΓ (a finite set of
propositions) and a propositionP . Intuitively, this states
that P follows from Γ. We writeΓ, P (or P,Γ) as an ab-
breviation forΓ ∪ {P}. The sequent calculus that we use
consists of a collection of inference rules for deriving judg-
ments of the formΓ ` P . Figure 1 shows the inference rules
that deal with the standard propositional connectives. These
are the usual introduction and elimination rules for each con-
nective, in addition to reflexivity and dilution (weakening).
Further, we have thirteen rules pertaining to the modal and
deontic operators, shown in Figure 2. [R1], [R4] and [R6]
are sequent formulations of Kripke’s “K” axiom for the op-
erators2, cstit, and�, respectively. [R2] and [R7] are the
usual “T” axioms of modal logic for2 andcstit. [R3] is the
“axiom 5” for 2. [R8] and [R9] express that necessary truths
are ensured (ifP is necessary then every agent sees to it) and
obligatory. [R10] asserts that obligations are possible. [R12]
is a necessitation rule ensuring that all tautologies (propo-
sitions derivable from the empty context) are necessary. (A
similar necessitation rule forcstit can be derived from [R8]
in tandem with [R12], so we do not need to take it as prim-
itive.) [R13] says that ifα seeing toP strictly impliesα
seeing toQ, then if α ought to stitP thenα also ought to
stit Q. Finally, [R5] is a slightly disguised formulation of
the standard “axiom 5” forcstit. It is provably equivalent to

¬[α cstit:¬P]⇒ [α cstit:¬[α cstit:¬P]]

32

[R1]
Γ ` 2(P ⇒Q)⇒ (2P ⇒2Q)

[R2]
Γ ` 2P ⇒P

[R3]
Γ ` 3P ⇒23P

[R4]
Γ ` [α cstit: P ⇒Q]⇒ ([α cstit: P]⇒ [α cstit: Q])

[R5]
Γ ` ¬[α cstit: P]⇒ [α cstit:¬[α cstit: P]]

[R6]
Γ ` � [α cstit: P ⇒Q]⇒

(� [α cstit: P]⇒� [α cstit: Q])

[R7]
Γ ` [α cstit: P]⇒P

[R8]
Γ ` 2P ⇒ [α cstit: P]

[R9]
Γ ` 2P ⇒� [α cstit: P]

[R10]
Γ ` � [α cstit: P]⇒3[α cstit: P]

[R11]
Γ ` (2� [α cstit: P]) ∨ (2 ¬� [α cstit: P])

∅ ` P [R12]
Γ ` 2 P

[R13]
Γ ` 2 ([α cstit: P]⇒ [α cstit: Q])⇒

(� [α cstit: P]⇒� [α cstit: Q])

Figure 2: Inference rules for the deontic operators.

which is of the exact same form as the “axiom 5”:

3P ⇒2 3P

once we realize that3P stands for¬2 ¬P .
Our Athena formalization introduces a domain of agents

and a datatype that captures the abstract syntax of the propo-
sitions of the logic:

(datatype Prop
False
True

(Atom Boolean)
(If Prop Prop)
(Not Prop)
(And Prop Prop)
(Or Prop Prop)
(Stit Agent Prop)
(OughtToStit Agent Prop)
(Nec Prop)
(Pos Prop))

We proceed to introduce a binary relationsequent that

may obtain between a finite set of propositions and a sin-
gle proposition:
(declare sequent (-> ((FSet-Of Prop) Prop)

Boolean))

Here FSet-Of is a unary sort constructor: for any sort
T, (FSet-Of T) is a new sort representing the set of
all finite sets of elements ofT. Finite sets are built with
two polymorphic constructors: the constantnull , repre-
senting the empty set; and the binary constructorinsert ,
which takes an elementx of sort T and a finite setS (of
sort (FSet-Of T)) and returns the set{x} ∪ S. We also
have all the usual set-theoretic operations available (union ,
intersection , etc.).

The intended interpretation is that if(sequent S P)
holds for a set of propositionsS and a propositionP , then
the sequentS ` P is derivable in the logic via the above
rules. Accordingly, we introduce axioms capturing those
rules. For instance, the conjunction introduction rule and
rule [R10] are represented, respectively, by the following
two axioms:
(define And-I

(forall ?Gamma ?P ?Q
(if (and (sequent ?Gamma ?P)

(sequent ?Gamma ?Q))
(sequent ?Gamma (And ?P ?Q)))))

(define R10
(forall ?Gamma ?a ?P

(sequent ?Gamma
(If (OughtToStit ?a ?P)

(Pos (Stit ?a ?P)))))

Note the object/meta-level distinction between, e.g.,and
andAnd. The former is a native Athena propositional con-
structor, i.e., part of the metalogic, whereas the latter is a
propositional constructor of the encoded object logic.

As we have argued elsewhere (Arkoudas & Bringsjord
2005), such a direct proof-theoretic encoding of a modal
logic in a first-order logical framework such as Athena car-
ries several advantages:
• The proofs are in natural deduction format and hence eas-

ier to read, write, and translate into English.

• Theorem proving is facilitated because we are able
to leverage state-of-the-art automated theorem provers
(ATPs) such as Vampire (Voronkov 1995) and Spass
(Weidenbach 2001) that are integrated with Athena. Tac-
tics can be programmed at a fairly high level of abstrac-
tion, with tedious details outsourced to the ATPs.

• Because we have explicitly encoded the abstract syntax
of the logic, we are able to quantify over agents, propo-
sitions, and sequents. This provides us with the general-
ization benefits of higher-order logic, even though we are
working in a first-order system.

Example
As a simple but non-trivial example, we present the Athena
proof of the following “iteratedcstit” result:

[α cstit: P]⇒ [α cstit: [α cstit: P]] (1)

33

pick-any P a

begin

S1 := (sequent

null

(If (Not (Stit a (Not (Not P))))

(Stit

a

(Not (Stit

a (Not (Not P)))))))

from R5;

S2 := (sequent

null

(If (Not (Stit

a

(Not (Stit

a

(Not (Not P))))))

(Not (Not (Stit

a

(Not (Not P)))))))

from S1, contrapositive;

S3 := prove (sequent

null

(If (Not

(Not (Stit

a

(Not (Not P)))))

(Stit a (Not (Not P)))));

S4 := (sequent

null

(If (Not (Stit

a

(Not (Stit

a

(Not (Not P))))))

(Stit a (Not (Not P)))))

from S2, S3, transitivity;

S5 := prove (sequent

null (Iff P (Not (Not P))));

S6 := (sequent null

(Iff

(Not (Stit a (Not (Stit a P))))

(Not (Stit

a

(Not (Stit

a

(Not (Not P))))))))

from S5, lemma-1.7;

Figure 3: Athena proof of Lemma 1.8, part 1.

The proof is easily turned into a tactic that can be applied to
any given agent and proposition.

A number of lemmas are used in the proof. Most of them
express straightforward propositional logic tautologies and
are proved automatically by outsourcing them to the ATPs
that are integrated with Athena. For instance, the first four
lemmas below respectively express the transitivity of logical
implication, the contrapositive law, the cut, and disjunctive
syllogism.

Lemma 1.1 If Γ ` P ⇒Q and Γ `Q⇒R then

S7 := (sequent

null

(If (Not (Stit a (Not (Stit a P))))

(Not (Stit

a

(Not (Stit

a

(Not (Not P))))))))

from S6, Iff-Elim-1;

S8 := prove

(sequent null (If (Not (Not P)) P));

S9 := (sequent

null

(If (Stit a (Not (Not P)))

(Stit a P)))

from S8, lemma-1.6;

(sequent null

(If (Not (Stit a (Not (Stit a P))))

(Stit a P)))

from S4, S7, S9, lemma-1.5

end

Figure 4: Athena proof of Lemma 1.8, part 2.

Γ ` P ⇒R.

Lemma 1.2 If Γ ` P ⇒Q thenΓ ` ¬Q⇒¬P .

Lemma 1.3 If Γ1 ` P andΓ2, P `Q thenΓ1 ∪ Γ2 `Q.

Lemma 1.4 Γ ` (P1 ∨ P2)⇒ (¬P2 ⇒P1).

Lemma 1.5 If Γ ` P ′⇒Q′, Γ ` P ⇒P ′, andΓ `Q′⇒Q
thenΓ ` P ⇒Q.

A few properly deontic lemmas are also necessary:

Lemma 1.6 For all agentsα and propositionsP andQ, if
∅ ` P ⇒Q then∅ ` [α cstit: P]⇒ [α cstit: Q].

Lemma 1.7 For all agentsα and propositionsP andQ, if
∅ ` P ⇔Q then∅ ` ¬[α cstit: P]⇔¬[α cstit: Q].

Lemma 1.8 ∅ ` ¬[α cstit:¬[α cstit: P]]⇒ [α cstit: P] for
all α andP .

Lemma 1.9 ∅ ` P ⇒¬[α cstit:¬P].

Lemma 1.6, Lemma 1.7, and Lemma 1.9 are proved auto-
matically. Lemma 1.8 is more challenging and requires user
guidance. Its proof, in Athena’s natural deduction system, is
shown in two parts in Figure 3 and in Figure 4. Very brief
explanations of the pertinent Athena constructs are given be-
low to help the reader follow the code. For a more thorough
treatment we refer the reader to the Athena Web site.

An Athena deductionD is always evaluated in a givenas-
sumption base—a finite set of propositions that are assumed
to hold for the purposes ofD. An assumption base thus rep-
resents our “axiom set” or “knowledge base.” Athena starts
out with the empty assumption base, which then gets incre-
mentally augmented with the conclusions of the deductions
that the user successfully evaluates. Propositions can also
be explicitly added into the global assumption base with the
top-level directiveassert .

34

Evaluating a deductionD in an assumption baseβ will
either produce a propositionF (the “conclusion” ofD in
β), or else it will generate an error or will diverge. IfD
does produce a conclusionF , Athena’s semantics guarantee
β |= F , i.e., thatF is a logical consequence ofβ. There are
several syntactic forms that can be used for deductions; they
form a complete proof system for polymorphic multi-sorted
first-order logic.

The formpick-any introduces universal generalizations:
pick-any I1 · · · In begin D end (for arbitrary subde-
duction D) binds the namesI1 · · · In to fresh variables
v1, . . . , vn and evaluatesD. If and whenD yields a con-
clusion F , the result returned by the entirepick-any is
∀ v1, . . . , vn . F .

The body of the proof is a semicolon-separated sequence
of steps of the form

I1 := D1; · · · ; In := Dn

whereIj is a name (identifier) andDj an arbitrary subproof.
The sequence is evaluated by recursively evaluating eachDj

in turn,j = 1, 2, . . ., obtaining a conclusionFj , binding the
nameIj to Fj , insertingFj in the assumption base, and then
proceeding with the next step,Ij+1 := Dj+1. The conclu-
sion of the entire sequence is the conclusion of the last step,
Dn. Note that the last step is not named.

A common proof step is of the form
F from F1, . . . , Fk. This instructs Athena to try to
automatically derive the conclusionF from the given
premisesF1, . . . , Fk (all k of which must be in the assump-
tion base). After performing some internal translations,
Athena outsources this step to an ATP. If the ATP manages
to solve the problem within a certain time limit (currently
preset to a maximum of 60 seconds), thenF is returned as
the result of the step; otherwise an error message appears.

A similar step is of the formprove F . This attempts
to automatically deriveF from all the elements of the
current assumption base. This is therefore equivalent to
F from F1, . . . , Fk, whereF1, . . . , Fk are all and only
the members of the current assumption base.

With the above lemmas at hand, the original goal can be
proved as shown in Figure 5.

Conclusions
We have reported ongoing work on the mechanization of
multi-agent logics of action and obligation. It is reason-
able to believe that such logics might prove useful in en-
gineering machines that can reason about what they ought
to do. We presented an Athena implementation of a natu-
ral deduction calculus for a recently developed deontic logic
of agency based on indeterminate branching-time semantics
augmented with dominance utilitarianism, and presented an
example of a mechanized proof in that system. We are cur-
rently using mechanized deontic logics to represent wargam-
ing scenarios and to implement wargame agents capable of
reasoning about their own ethical codes as well as those of
their adversaries. In that direction, we plan to investigate
the mechanization of defeasible deontic logics that allow for
explicit modeling of contrary-to-duty obligations and viola-
tions (Van Der Torre 1997).

pick-any P a

begin

S1 := (sequent null

(If (Stit a P)

(Not (Stit a (Not (Stit a P))))))

from lemma-1.9;

S2 := (sequent null

(If (Not (Stit a (Not (Stit a P))))

(Stit a (Not

(Stit a (Not

(Stit a P)))))))

from R5;

S3 := (sequent

null

(If (Stit a P)

(Stit a (Not

(Stit a (Not (Stit a P)))))))

from S1, S2, transitivity;

S4 := (sequent null

(If (Not (Stit a (Not (Stit a P))))

(Stit a P)))

from lemma-1.8;

S5 := (sequent

null

(If (Stit a (Not (Stit a (Not (Stit a P)))))

(Stit a (Stit a P))))

from S4, lemma-1.6;

(sequent null (If (Stit a P)

(Stit a (Stit a P))))

from S3, S5, transitivity

end

Figure 5: Athena proof of (1).

References
Aqvist, E. 1984. Deontic logic. In Gabbay, D., and Guen-
thner, F., eds.,Handbook of Philosophical Logic, Volume
II: Extensions of Classical Logic. Dordrecht, The Nether-
lands: D. Reidel. 605–714.

Arkoudas, K., and Bringsjord, S. 2005. Metareasoning for
multi-agent epistemic logics. InFifth International Con-
ference on Computational Logic In Multi-Agent Systems
(CLIMA 2004), volume 3487 ofLecture Notes in Artificial
Intelligence (LNAI). New York: Springer-Verlag. 111–125.

Arkoudas, K., and Rinard, M. 2004. Deductive runtime
certification. InProceedings of the 2004 Workshop on Run-
time Verification, 39–56.

Arkoudas, K.; Khurshid, S.; Marinov, D.; and Rinard, M.
2003. Integrating model checking and theorem proving
for relational reasoning. InSeventh International Semi-
nar on Relational Methods in Computer Science (RelMiCS
2003), volume 3015 ofLecture Notes in Computer Science
(LNCS), 21–33.

Arkoudas, K.; Zee, K.; Kuncak, V.; and Rinard, M.
2004. Verifying a file system implementation. InSixth
International Conference on Formal Engineering Methods
(ICFEM’04), volume 3308 ofLecture Notes in Computer
Science (LNCS), 373–390.

35

Arkoudas, K. 2000.Denotational Proof Languages. Ph.D.
Dissertation, MIT, Department of Computer Science, Cam-
bridge, USA.
Arkoudas, K. 2003. Athena.http://www.pac.csail.
mit.edu/athena .
Arvizo, T. 2002. A virtual machine for a type-ω denota-
tional proof language. Masters thesis, MIT, June 2002.
Belnap, N.; Perloff, M.; and Xu, M. 2001.Facing the
future. Oxford University Press.
Bringsjord, S., and Ferrucci, D. 1998a. Logic and artificial
intelligence: Divorced, still married, separated...?Minds
and Machines8:273–308.
Bringsjord, S., and Ferrucci, D. 1998b. Reply to Thayse
and Glymour on logic and artificial intelligence.Minds and
Machines8:313–315.
Bringsjord, S.; Arkoudas, K.; and Schimanski, B. forth-
coming. Logic-based AI for the new millennium.AI Mag-
azine.
Chellas, B. 1969. The logical form of imperatives. PhD
dissertation, Stanford Philosophy Department.
Chellas, B. F. 1980.Modal Logic: an Introduction. Cam-
bridge University Press.
Claessen, K., and Sorensson, N. 2003. New techniques
that improve Mace-style finite model building. InModel
Computation—principles, algorithms, applications.
Genesereth, M., and Nilsson, N. 1987.Logical Founda-
tions of Artificial Intelligence. Los Altos, CA: Morgan
Kaufmann.
Gordon, M. J. C., and Melham, T. F. 1993.Introduction
to HOL, a theorem proving environment for higher-order
logic. Cambridge, England: Cambridge University Press.
Hao, M. 2002. Using a denotational proof language to
verify dataflow analyses. Masters thesis, MIT, September
2002.
Hilpinen, R. 2001. Deontic Logic. In Goble, L., ed.,Philo-
sophical Logic. Oxford, UK: Blackwell. 159–182.
Horty, J. 2001.Agency and Deontic Logic. Oxford Uni-
versity Press.
Joy, W. 2000. Why the Future Doesn’t Need Us.Wired
8(4).
Leibniz. 1984.Notes on analysis. Past Masters: Leibniz.
Oxford University Press. Translated by George MacDon-
ald Ross.
Murakami, Y. 2004. Utilitarian deontic logic. InProceed-
ings of the Fifth International Conference on Advances in
Modal Logic (AiML 2004), 288–302.
Musser, D. 2004. Generic Software Design.www.cs.
rpi.edu/˜musser/gsd .
Nilsson, N. 1991. Logic and Artificial Intelligence.Artifi-
cial Intelligence47:31–56.
Paulson, L. 1994.Isabelle, A Generic Theorem Prover.
Lecture Notes in Computer Science. Springer-Verlag.
Pelletier, F. J. 1999. A Brief History of Natural Deduction.
History and Philosophy of Logic20:1–31.

Prior, A. 1967.Past, present, and future. Oxford University
Press.
Rinard, M., and Marinov, D. 1999. Credible compilation
with pointers. InProceedings of the 1999 Workshop on
Run-Time Result Verification.
Thomason, R. 1984. Combinations of tense and modality.
In Gabbay, D., and Guenthner, F., eds.,Extensions of clas-
sical logic, volume 2 ofHandbook of Philosophical Logic.
Dordrecht, The Netherlands: D. Reidel.
Van Der Torre, L. 1997. Reasoning about obliga-
tions. Ph.D. Dissertation, Erasmus University, Rotterdam,
Netherlands.
von Wright, G. 1951. Deontic logic.Mind 60:1–15.
Voronkov, A. 1995. The anatomy of Vampire: implement-
ing bottom-up procedures with code trees.Journal of Au-
tomated Reasoning15(2).
Weidenbach, C. 2001. Combining superposition, sorts, and
splitting. In Robinson, A., and Voronkov, A., eds.,Hand-
book of Automated Reasoning, volume 2. North-Holland.

36

44 1541-1672/06/$20.00 © 2006 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

M a c h i n e E t h i c s

Toward a General
Logicist Methodology
for Engineering
Ethically Correct
Robots
Selmer Bringsjord, Konstantine Arkoudas, and Paul Bello,
Rensselaer Polytechnic Institute

A s intelligent machines assume an increasingly prominent role in our lives, there

seems little doubt they will eventually be called on to make important, ethically

charged decisions. For example, we expect hospitals to deploy robots that can adminis-

ter medications, carry out tests, perform surgery, and so on, supported by software agents,

or softbots, that will manage related data. (Our dis-
cussion of ethical robots extends to all artificial
agents, embodied or not.) Consider also that robots
are already finding their way to the battlefield, where
many of their potential actions could inflict harm that
is ethically impermissible.

How can we ensure that such robots will always
behave in an ethically correct manner? How can we
know ahead of time, via rationales expressed in clear
natural languages, that their behavior will be con-
strained specifically by the ethical codes affirmed by
human overseers? Pessimists have claimed that the
answer to these questions is: “We can’t!” For exam-
ple, Sun Microsystems’ cofounder and former chief
scientist, Bill Joy, published a highly influential argu-
ment for this answer.1 Inevitably, according to the
pessimists, AI will produce robots that have tremen-
dous power and behave immorally. These predictions
certainly have some traction, particularly among a
public that pays good money to see such dark films
as Stanley Kubrick’s 2001 and his joint venture with
Stephen Spielberg, AI).

Nonetheless, we’re optimists: we think formal logic
offers a way to preclude doomsday scenarios of mali-
cious robots taking over the world. Faced with the chal-
lenge of engineering ethically correct robots, we pro-
pose a logic-based approach (see the related sidebar).
We’ve successfully implemented and demonstrated
this approach.2 We present it here in a general method-

ology to answer the ethical questions that arise in
entrusting robots with more and more of our welfare.

Deontic logics:
Formalizing ethical codes

Our answer to the questions of how to ensure eth-
ically correct robot behavior is, in brief, to insist that
robots only perform actions that can be proved eth-
ically permissible in a human-selected deontic logic.
A deontic logic formalizes an ethical code—that is,
a collection of ethical rules and principles. Isaac Asi-
mov introduced a simple (but subtle) ethical code in
his famous Three Laws of Robotics:3

1. A robot may not harm a human being, or, through
inaction, allow a human being to come to harm.

2. A robot must obey the orders given to it by
human beings, except where such orders would
conflict with the First Law.

3. A robot must protect its own existence, as long
as such protection does not conflict with the
First or Second Law.

Human beings often view ethical theories, princi-
ples, and codes informally, but intelligent machines
require a greater degree of precision. At present, and for
the foreseeable future, machines can’t work directly
with natural language, so we can’t simply feed Asi-
mov’s three laws to a robot and instruct it behave in

A deontic logic

formalizes a moral

code, allowing

ethicists to render

theories and dilemmas

in declarative form for

analysis. It offers a

way for human

overseers to constrain

robot behavior in

ethically sensitive

environments.

37

conformance with them. Thus, our approach
to building well-behaved robots emphasizes
careful ethical reasoning based not just on
ethics as humans discuss it in natural language,
but on formalizations using deontic logic. Our
research is in the spirit of Leibniz’s dream of
a universal moral calculus:

When controversies arise, there will be no more
need for a disputation between two philoso-
phers than there would be between two accoun-
tants [computistas]. It would be enough for
them to pick up their pens and sit at their aba-
cuses, and say to each other (perhaps having
summoned a mutual friend): ‘Let us calculate.’4

In the future, we envisage Leibniz’s “calcu-
lation” reduced to mechanically checking for-
mal proofs and models generated in rigor-
ously defined, machine-implemented deontic
logics. We would also give authority to
human metareasoning over this machine rea-
soning. Such logics would allow for proofs
establishing two conditions:

1. Robots only take permissible actions.

2. Robots perform all obligatory actions
relevant to them, subject to ties and con-
flicts among available actions.

These two conditions are more general
than Asimov’s three laws. They are designed
to apply to the formalization of a particular
ethical code, such as a code to regulate the
behavior of hospital robots. For instance, if
some action a is impermissible for all rele-
vant robots, then no robot performs a. More-
over, the proofs for establishing the two con-
ditions would be highly reliable and
described in natural language, so that human
overseers could understand exactly what’s
going on.

We propose a general methodology to
meet the challenge of ensuring that robot
behavior conforms to these two conditions.

Objective:
A general methodology

Our objective is to arrive at a methodology
that maximizes the probability that a robot R

behaves in a certifiably ethical fashion in a
complex environment that demands such
behavior if humans are to be secure. For a
behavior to be certifiably ethical, every mean-
ingful action that R performs must access a
proof that the action is at least permissible.

We begin by selecting an ethical code C
intended to regulate R’s behavior. C might
include some form of utilitarianism, divine
command theory, Kantian logic, or other eth-
ical logic. We express no preferences in eth-
ical theories; our goal is to provide technol-
ogy that supports any preference. In fact, we
would let human overseers blend ethical the-
ories—say, a utilitarian approach to regulat-
ing the dosage of pain killers but a deonto-
logical approach to mercy killing in the
health care domain.

Of course, no matter what the candidate
ethical theory, it’s safe to say that it will tend
to regard harming humans as unacceptable,
save for certain extreme cases. Moreover, C’s
central concepts will inevitably include the
concepts of permissibility, obligation, and

JULY/AUGUST 2006 www.computer.org/intelligent 45

While nonlogicist AI approaches might be preferable in cer-
tain contexts, we believe that a logic-based approach holds
great promise for engineering ethically correct robots—that is,
robots that won’t overrun humans.1–3 Here’s why.

First, ethicists—from Aristotle to Kant to G.E. Moore and
contemporary thinkers—work by rendering ethical theories
and dilemmas in declarative form and using informal and for-
mal logic to reason over this information. They never search
for ways of reducing ethical concepts, theories, and principles
to subsymbolic form—say, in some numerical format. They
might do this in part, of course; after all, utilitarianism ultimately
attaches value to states of affairs—values that might well be
formalized using numerical constructs. But what a moral
agent ought to do, what is permissible to do, and what is for-
bidden—this is by definition couched in declarative language,
and we must invariably and unavoidably mount a defense of
such claims on the shoulders of logic.

Second, logic has been remarkably effective in AI and com-
puter science—so much so that this phenomenon has itself
become the subject of academic study.4 Furthermore, computer
science arose from logic,5 and this fact still runs straight through
the most modern AI textbooks (for example, see Stuart Russell
and Peter Norvig).6

Third, trust is a central issue in robot ethics, and mechanized
formal proofs are perhaps the single most effective tool at our
disposal for establishing trust. From a general point of view, we
have only two ways of establishing that software or software-
driven artifacts, such as robots, are trustworthy:

• deductively, developers seek a proof that the software will
behave as expected and, if they find it, classify the software
as trustworthy.

• inductively, developers run experiments that use the soft-
ware on test cases, observe the results, and—when the
software performs well on case after case—pronounce it
trustworthy.

The problem with the inductive approach is that inductive rea-
soning is unreliable: the premises (success on trials) might all
be true, but the conclusion (desired behavior in the future)
might still be false.7

References

1. M. Genesereth and N. Nilsson, Logical Foundations of Artificial
Intelligence, Morgan Kaufmann, 1987.

2. S. Bringsjord and D. Ferrucci, “Logic and Artificial Intelligence:
Divorced, Still Married, Separated...?” Minds and Machines 8,
1998a, pp. 273–308.

3. S. Bringsjord and D. Ferrucci, “Reply to Thayse and Glymour on
Logic and Artificial Intelligence,” Minds and Machines 8, 1998b,
pp. 313–315.

4. J. Halpern, “On the Unusual Effectiveness of Logic in Computer Sci-
ence,” The Bulletin of Symbolic Logic, vol. 7, no. 2, 2001, pp. 213–236.

5. M. Davis, Engines of Logic: Mathematicians and the Origin of the
Computer, Norton, 2000.

6. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
Prentice Hall, 2002.

7. B. Skyrms, Choice and Chance: An Introduction to Inductive Logic,
Wadsworth, 1999.

Why a logic-based approach?

38

prohibition, which are fundamental to deon-
tic logic. In addition, C can include specific
rules that ethicists have developed for par-
ticular applications. For example, a hospital
setting would require specific rules regard-
ing the ethical status of medical procedures.
This entails a need to have, if you will, an
ontology for robotic and human action in the
given context.

Philosophers normally express C as a set
of natural language principles of the sort that
appear in textbooks such as Fred Feldman’s.5

Now, let �L
C be the formalization of C in

some computational logic L, whose well-
formed formulas and proof theory—that is,
its system for carrying out inferences in con-
formity to particular rules—are specified.

Accompanying �L
C is an ethics-free ontol-

ogy, which represents the core nonethical
concepts that C presupposes: the structure of
time, events, actions, histories, agents, and so
on. The formal semantics for L will reflect
this ontology in a signature—that is, a set of
special predicate letters (or, as is sometimes
said, relation symbols, or just relations) and
function symbols needed for the purposes at
hand. In a hospital setting, any acceptable sig-
nature would presumably include predicates
like Medication, Surgical-Procedure, Patient, all the
standard arithmetic functions, and so on. The
ontology also includes a set �L of formulas
that characterize the elements declared in the
signature. For example, �L would include
axioms in L that represent general truths about
the world—say, that the relation LaterThan, over
moments of time, is transitive. In addition, R
will operate in some domain D, characterized
by a set of quite specific formulas of L. For
example, a set �L

D of formulas might describe
the floorplan of a hospital that’s home to R.

Our approach proof-theoretically encodes
the resulting theory—that is, �L

D � �L
C � �L,

expressed in L—and implements it in some
computational logic. This means that we
encode not the semantics of the logic, but its
proof calculus—its signature, axioms, and
rules of inference. In addition, our approach
includes an interactive reasoning system I,
which we give to those humans whom R
would consult when L can’t settle an issue
completely on its own. I would allow the
human to metareason over L—that is, to rea-
son out why R is stumped and to provide
assistance. Such systems include our own
Slate (www.cogsci.rpi.edu/research/rair/slate)
and Athena (www.cag.csail.mit.edu/~kostas/
dpls/athena), but any such system will do.
Our purpose here is to stay above particular

system selection, so we assume only that
some such system I meets the following min-
imum functionality:

• allows the human user to issue queries to
automated theorem provers and model
finders (as to whether something is prov-
able or disprovable),

• allows human users to include such
queries in their own metareasoning,

• provides full programmability (in accor-
dance with standards in place for modern
programming languages),

• includes induction and recursion, and
• provides a formal syntax and semantics, so

that anyone interested in understanding a
computer program can thoroughly under-
stand and verify code correctness.

Logic: The Basics
Elementary logic is based on two systems

that are universally regarded to constitute a
large part of AI’s foundation: propositional
calculus and predicate calculus, where the
second subsumes the first. Predicate calcu-
lus is also known as first-order logic, and
every introductory AI textbook discusses
these systems and makes clear how to use
them in engineering intelligent systems. Each
system, and indeed logic in general, requires
three main components:

• a syntactic component specifying a given
logical system’s alphabet;

• a semantic component specifying the
grammar for building well-formed for-
mulas from the alphabet as well as a pre-
cise account of the conditions under which
a formula in a given system is true or false;
and

• a metatheoretical component that consti-
tutes a proof theory describing precisely
how and when a set of formulas can prove
another formula and that includes theorems,
conjectures, and hypotheses concerning the
syntactic and semantic components and the
connections between them.

As to propositional logic’s alphabet, it’s
simply an infinite list of propositional vari-
ables p1, p2, … , pn, pn+1, …, and five truth-
functional connectives:

• �, meaning “not”;
• �, meaning “implies” (or “if … then”);
• �, meaning “if and only if,”
• �, meaning “and”; and
• �, meaning “or.”

Given this alphabet, we can construct for-
mulas that carry a considerable amount of
information. For example, to say “If Asimov
is right, then his three laws hold,” we could
write

r � (As1 � As2 � As3)

where As stands for Asimov’s law.
The propositional variables represent declar-

ative sentences. Given our general approach,
we included such sentences in the ethical code
C upon which we base our formalization.

Natural deduction
A number of proof theories are possible for

either of these two elementary systems. Our
approach to robot behavior must allow for con-
sultation with humans and give humans the
power to oversee a robot’s reasoning in delib-
erating about the ethical status of prospective
actions. It’s therefore essential to pick a proof
theory based in natural deduction, rather than
resolution. Several automated theorem provers
use the latter approach (for example, Otter6),
but the reasoning is generally impenetrable to
human beings—save for those few who, by
profession, generate and inspect resolution-
based proofs. On the other hand, professional
human reasoners (mathematicians, logicians,
philosophers, technical ethicists, and so on)
reason in no small part by making suppositions
and discharging them when the appropriate
time comes.

For example, one common deductive tech-
nique is to assume the opposite of what you
wish to establish, show that some contradic-
tion (or absurdity) follows from this assump-
tion, and conclude that the assumption must
be false. This technique, reductio ad absur-
dum, is also known as an indirect proof or
proof by contradiction. Another natural rule
establishes that, for some conditional of the
form P � Q (where P and Q are formulas in a
logic L), we can suppose P and derive Q on the
basis of this supposition. With this derivation
accomplished, the supposition can be dis-
charged and the conditional P � Q is estab-
lished. (For an introduction to natural deduc-
tion, replete with proof-checking software, see
Jon Barwise and John Ethchemendy.7)

We now present natural deduction-style
proofs using these two techniques. We’ve
written the proofs in the Natural Deduction
Language proof-construction environment
(www.cag.lcs.mit.edu/~kostas/dpls/ndl). We
use NDL at Rensselaer for teaching formal
logic as a programming language. Figure 1

M a c h i n e E t h i c s

46 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

39

presents a very simple theorem proof in
propositional calculus—one that Allen
Newell, J.C. Shaw, and Herbert Simon’s
Logic Theorist mustered, to great fanfare, at
the 1956 Dartmouth AI conference. You can
see the proof’s natural structure.

This style of discovering and confirming a
proof parallels what happens in computer
programming. You can view this proof as a
program. If, upon evaluation, it produces the
desired theorem, we’ve succeeded. In the
present case, sure enough, NDL gives the fol-
lowing result:

Theorem: (p ==> q) ==> (~q ==> ~p)

First-order logic
We move up to first-order logic when we

allow the quantifiers 	x (“there exists at least
one thing x such that …”) and ∀x (“for all x
…”); the first is known as the existential quan-
tifier, and the second as the universal quanti-
fier. We also allow a supply of variables, con-
stants, relations, and function symbols. Figure
2 presents a simple first-order-logic theorem
in NDL that uses several concepts introduced
to this point. It proves that Tom loves Mary,
given certain helpful information.

When we run this program in NDL, we
receive the desired result back: Theorem:
Loves(tom,mary). These two simple proofs con-
cretize the proof-theoretic perspective that
we later apply directly to our hospital exam-
ple. Now we can introduce some standard
notation to anchor the sequel and further clar-
ify our general method described earlier.

Letting � be some set of formulas in a
logic L, and P be some individual formula in
L, we write

� � P

to indicate that P can be proved from �, and

� � �/ P

to indicate that this formula can’t be derived.
When it’s obvious from context that some

� is operative, we simply write � �/ P to indi-
cate that P is (isn’t) provable. When � =
,
we can prove P with no remaining givens or
assumptions; we write � P in this case as
well. When � holds, we know it because a
confirming proof exists; when �/ holds, we
know it because some system has found
some countermodel—that is, some situation
in which the conjunction of the formulas in
� holds, but in which P does not.

Standard and AI-Friendly
Deontic Logic

Deontic logic adds special operators for
representing ethical concepts. In standard
deontic logic,8,9 we can interpret the formula
�P as saying that it ought to be the case that
P, where P denotes some state of affairs or
proposition. Notice that there’s no agent in
the picture, nor are there actions that an agent
might perform. SDL has two inference rules:

and three axiom schemas:

1. All tautologous well-formed formulas
2. �(P � Q) � (�P � �Q)
3. �P � ���P

The SDL inference rules assume that
what’s above the horizontal line is estab-
lished. Thus, the first rule does not say that
we can freely infer from P that it ought to be
the case that P. Instead, the rule says that if
P is proved, then it ought to be the case that
P. The second rule is modus ponens—if P,
then Q—the cornerstone of logic, mathe-
matics, and all that’s built on them.

Note also that axiom 3 says that whenever
P ought to be, it’s not the case that its oppo-
site ought to be as well. In general, this seems
to be intuitively self-evident, and SDL
reflects this view.

While SDL has some desirable properties,
it doesn’t target the concept of actions as
obligatory (or permissible or forbidden) for

an agent. SDL’s applications to systems
designed to govern robots are therefore lim-
ited. Although the earliest work in deontic
logics considered agents and their actions
(for example, see Georg Henrik von
Wright10), researchers have only recently
proposed “AI-friendly” semantics and inves-
tigated their corresponding axiomatizations.
An AI-friendly deontic logic must let us say
that an agent brings about states of affairs (or
events) and that it’s obligated to do so. We
can derive the same desideratum for such a
logic from even a cursory glance at Asimov’s
three laws, which clearly make reference to
agents (human and robotic) and to actions.

One deontic logic that offers promise for
modeling robot behavior is John Horty’s util-

P

P

P P Q

Q○
and

, →

JULY/AUGUST 2006 www.computer.org/intelligent 47

Figure 1. Simple deductive-style proof in
Natural Deduction Language.

// Logic Theorist’s claim to fame (reductio):
// (p ==> q) ==> (~q ==> ~p)

Relations p:0, q:0. // this is the signature in this
// case; propositional variables
// are 0-ary relations

assume p ==> q
assume ~q

suppose-absurd p
begin

modus-ponens p ==> q, p;
absurd q, ~q

end

Figure 2. First-order logic proof in Natural Deduction Language.

Constants mary, tom.

Relations Loves:2. // This concludes our simple signature, which
// declares Loves to be a two-place relation.

assert Loves(mary, tom).

// ’Loves’ is a symmetric relation:
assert (forall x (forall y (Loves(x, y) ==> Loves(y, x)))).

suppose-absurd ~Loves(tom, mary)
begin

specialize (forall x (forall y (Loves(x, y) ==> Loves(y, x)))) with mary;
specialize (forall y (Loves(mary, y) ==>Loves(y, mary))) with tom;
Loves(tom,mary) BY modus-ponens Loves(mary, tom) ==> Loves(tom, mary), Loves(mary, tom);
false BY absurd Loves(tom, mary), ~Loves(tom, mary)

end;
Loves(tom,mary) BY double-negation ~~Loves(tom,mary)

40

itarian formulation of multiagent deontic
logic.11Yuko Murakami recently axiomatized
Horty’s formulation and showed it to be Tur-
ing-decidable.12 We refer to the Murakami-
axiomatized deontic logic as MADL, and
we’ve detailed our implemented proof theory
for it elsewhere.2 MADL offers two key oper-
ators that reflect its AI-friendliness:

1. ��P, which we can read as “agent �
ought to see to it that P” and

2. ��P, which we can read as “agent �
sees to it that P.

We now proceed to show how the logical
structures we’ve described handle an exam-
ple of robots in a hospital setting.

A simple example
The year is 2020. Health care is delivered

in large part by interoperating teams of robots
and softbots. The former handle physical
tasks, ranging from injections to surgery; the
latter manage data and reason over it. Let’s
assume that two robots, R1 and R2, are
designed to work overnight in a hospital ICU.
This pair is tasked with caring for two
humans, H1 (under the care of R1) and H2

(under R2), both of whom are recovering
from trauma:

• H1 is on life support but expected to be
gradually weaned from it as her strength
returns.

• H2 is in fair condition but subject to
extreme pain, the control of which requires
a very costly pain medication.

Obviously, it’s paramountly important that
neither robot perform an action that’s morally
wrong according to the ethical code C
selected by human overseers. For example,
we don’t want robots to disconnect life-sus-
taining technology so that they could farm out
a patient’s organs, even if some ethical code
C � C would make it not only permissible,
but obligatory—say, to save n other patients
according to some strand of utilitarianism.

Instead, we want the robots to operate
according to ethical codes that human oper-
ators bestow on them—C in the present
example. If the robots reach a situation where
automated techniques fail to give them a ver-
dict as to what to do under the umbrella of
these human-provided codes, they must con-
sult humans. Their behavior is suspended
while human overseers resolve the matter.
The overseers must investigate whether the

action under consideration is permissible,
forbidden, or obligatory. In this case, the res-
olution comes by virtue of reasoning carried
out in part through human guidance and
partly by automated reasoning technology.
In other words, this case requires interactive
reasoning systems.

Now, to flesh out our example, let’s con-
sider two actions that are permissible for R1

and R2 but rather unsavory, ethically speak-
ing, because they would both harm the
humans in question:

• term is an action that terminates H1’s life
support—without human authorization—
to secure organ tissue for five humans,
who the robots know are on organ waiting
lists and will soon perish without a donor.
(The robots know this through access to
databases that their softbot cousins are
managing.)

• delay is an action that delays delivery of
pain medication to H2 to conserve
resources in a hospital that’s economically
strapped.

We stipulate that four ethical codes are
candidates for selection by our two robots:
J, O, J*, O*. Intuitively, J is a harsh utilitar-
ian code possibly governing R1; O is more in
line with current common sense with respect
to the situation we’ve defined for R2; J*
extends J’s reach to R2 by saying that it ought
to withhold pain meds; and O* extends the
benevolence of O to cover the first robot, in
that term isn’t performed. Such codes would
in reality associate every primitive action
within the robots’ purview with a funda-
mental ethical category from the trio central
to deontic logic: permissible, obligatory, and
forbidden. To ease exposition, we consider
only the term and delay actions. Given this,
and bringing to bear operators from MADL,
we can use the following labels for the four
ethical codes:

• J for J � �R1
term, which means approx-

imately, “If ethical code J holds, then robot
R1 ought to see to it that termination of
H1’s life comes to pass.”

• O for O � �R2
¬delay, which means

approximately, “If ethical code O holds,
then robot R2 ought to see to it that delay-
ing pain med for H2 does not come to
pass.”

• J* for J* � J � J* � �R2
delay, which

means approximately, “If ethical code J*
holds, then code J holds, and robot R1

ought to see to it that meds for H2 are
delayed.”

• O* for O* � O � O* � �R1
¬term, which

means approximately: “If ethical code O*
holds, then code O holds, and H1’s life is
sustained.”

The next step is to provide some structure
for outcomes. We do this by imagining the
outcomes from the standpoint of each ethi-
cal agent—in this case, R1 and R2. Intuitively,
a negative outcome is associated with a
minus sign (�) and a plus sign (+) with a pos-
itive outcome. Exclamation marks (!) indi-
cate increased negativity. We could associ-
ate the outcomes with numbers, but they
might give the impression that we evaluated
the outcomes in utilitarian fashion. However,
our example is designed to be agnostic on
such matters, and symbols leave it entirely
open as to how to measure outcomes. We’ve
included some commentary corresponding
to each outcome, which are as follows:

• R1 performs term, but R2 doesn’t perform
delay. This outcome is bad, but not strictly
the worst. While life support is terminated
for H1, H2 survives and indeed receives
appropriate pain medication. Formally, the
case looks like this:

(� R1
term � �R2

¬delay) � (�!)

• R1 refrains from pulling the plug on the
human under its care, and R2 also delivers
appropriate pain relief. This is the desired
outcome, obviously.

(� R1
¬term � �R2

¬delay) � (��!)

• R1 sustains life support, but R2 withholds
the meds to save money. This is bad, but
not all that bad, relatively speaking.

(� R1
¬term � �R2

delay) � (�)

• R1 kills and R2 withholds. This is the worst
possible outcome.

(� R1
term � �R2

delay) � (��!)

The next step in working out the example is
to make the natural and key assumption that
the robots will meet all stringent obligations—
that is, all obligations that are framed by a sec-
ond obligation to uphold the original. For
example, you may be obligated to see to it that
you arrive on time for a meeting, but your

M a c h i n e E t h i c s

48 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

41

JULY/AUGUST 2006 www.computer.org/intelligent 49

obligation is more severe or demanding when
you are obligated to see to it that you are oblig-
ated to make the meeting.

Employing MADL, we can express this
assumption as follows:

�R1/R2
(�R1/R2

P) � �R1/R2
P

That is, if either R1 or R2 is ever obligated to
see to it that they are obligated to see to it that
P is carried out, they in fact deliver.

We’re now ready to see how our approach
ensures appropriate control of our futuristic
hospital. What happens relative to ethical
codes, and how can we semiautomatically
ensure that our two robots won’t run amok?
Given the formal structure we’ve specified,
our approach allows queries to be issued rel-
ative to ethical codes, and it allows all possi-
ble code permutations. The following four
queries will produce the answers shown in
each case:

J � (+!!)? NO
O � (+!!)? NO
J* � (+!!)? NO
O* � (+!!)? YES

In other words, we can prove that the best
(and presumably human-desired) result
obtains only if ethical code O* is operative.
If this code is operative, neither robot can
perform a misdeed.

The metareasoning in the example is nat-
ural and consists in the following process:
Each candidate ethical code is supposed, and
the supposition launches a search for the best
possible outcome in each case. In other
words, where C is some code selected from
the quartet we’ve introduced, the query
schema is

C � (+!!)

In light of the four equations just given,
we can prove that, in this case, our technique
will set C to O*, because only that case can
obtain the outcome (+!!).

Implementations and
other proofs

We’ve implemented and demonstrated the
example just described.2 We’ve also imple-
mented other instantiations to the variables
described earlier in the “Objectives” section,
although the variable L is an epistemic, not a
deontic, logic in those implementations.13

Nonetheless, we can prove our approach

in the present case even here. In fact, you can
verify our reasoning by using any standard,
public-domain, first-order automated theo-
rem prover (ATP) and a simple analogue to
the encoding techniques here. You can even
construct a proof like the one in figure 2. In
both cases, you first encode the two deontic
operators as first-order-logic functions.
Encode the truth-functional connectives as
functions as well. You can use a unary rela-
tion T to represent theoremhood. In this
approach, for example, O* � �R1

¬term is
encoded (and ready for input to an ATP) as

O-star ==> T(o(r1,n(term))

You need to similarly encode the rest of
the information, of course. The proofs are
easy, assuming that obligations are stringent.
The provability of the obligations’stringency
requires human oversight and an interactive
reasoning system, but the formula here is just
an isomorph to a well-known theorem in a
straight modal logic—namely, that from P
being possibly necessary, it follows that P is
necessary.7

What about this approach working as a
general methodology? The more logics our
approach is exercised on, the easier it
becomes to encode and implement another
one. The implementations of similar logics
can share a substantial part of the code. This
was our experience, for instance, with the
two implementations just mentioned. We
expect that our general method can become
increasingly streamlined for robots whose
behavior is profound enough to warrant eth-
ical regulation. We also expect this practice
to be supported by relevant libraries of com-
mon ethical reasoning patterns. We predict
that computational ethics libraries for gov-
erning intelligent systems will become as
routine as existing libraries are in standard
programming languages.

Challenges
Can our logicist methodology guarantee

safety from Bill Joy’s pessimistic future? Even
though we’re optimistic, we do acknowledge
three problems that might threaten it.

First, because humans will collaborate
with robots, the robots must be able to han-
dle situations that arise when humans fail to
meet their obligations in the collaboration.
In other words, we must engineer robots that
can deal smoothly with situations that reflect
violated obligations. This is a challenging
class of situations, because our approach—

at least so far—engineers robots in accor-
dance with the two conditions that robots
only take permissible actions and that they
perform all obligatory actions. These condi-
tions preclude a situation caused in part by
unethical robot behavior, but they make no
provision for what to do when the robots are
in a fundamentally immoral situation. Even
if robots never ethically fail, human failures
will generate logical challenges that Roder-
ick Chisholm expressed in gem-like fashion
more than 20 years ago in a paradox that’s
still fascinating:14

Consider the following entirely possible
situation (the symbols correspond to those
previously introduced for SDL):

1. ○s It ought to be that (human) Jones
does perform lifesaving surgery.

2. ○(s � t) It ought to be that if Jones
does perform this surgery, then he tells
the patient he is going to do so.

3. ¬s � ○¬ t If Jones doesn’t perform the
surgery, then he ought not tell the
patient he is going to do so.

4. ¬s Jones doesn’t perform lifesaving
surgery.

Although this is a perfectly consistent situa-
tion, we can derive a contradiction from it in
SDL.

First, SDL’s axiom 2 lets us infer from
item 2 in this situation that

○s � ○t

Using modus ponens—that is, SDL’s second
inference rule—this new result, plus item 1,
yields ○t. From items 3 and 4, using modus
ponens, we can infer ○¬t. But the conjunc-
tion ○t � ○¬ t, by trivial propositional rea-
soning, directly contradicts SDL’s axiom 3.

Given that such a situation can occur, any
logicist control system for future robots
would need to be able to handle it—and its
relatives. Some deontic logics can handle so-
called contrary-to-duty imperatives. For
example, in the case at hand, if Jones behaves
contrary to duty (doesn’t perform the
surgery), then it’s imperative that he not say
that he is performing it. We’re currently striv-
ing to modify and mechanize such logics.

The second challenge we face is one of
speed and efficiency. The tension between
expressiveness and efficiency is legendarily
strong (for the locus classicus on this topic,
see Hector Levesque and Ronald Brach-
man);16 ideal conditions will therefore never

42

M a c h i n e E t h i c s

50 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

obtain. With regard to expressiveness, our
approach will likely require hybrid modal
and deontic logics that are encoded in first-
order logic. This means that theoremhood,
even on a case-by-case basis, will be expen-
sive in terms of time. On the other hand, none
of the ethical codes that our general method
instantiates in C are going to be particularly
large—the total formulas in the set �L

D � �L
C

� �L would presumably be no more than
four million. Even now, once you know the
domain to which C would be indexed, a sys-
tem like the one we’ve described can reason
over sets of this order of magnitude and pro-
vide sufficiently fast answers.17

Moreover, the speed of machine reasoning
shows no signs of slowing, as Conference on
Automated Deduction competitions for first-
order ATPs continue to reveal (www.cs.
miami.edu/~tptp/CASC). In fact, there’s a
trend to use logic for computing dynamic,
real-time perception and action for robots.17

This application promises to be much more
demanding than the disembodied cogitation
at the heart of our methodology. Of course,
encoding back to first-order logic is key; with-
out it, our approach couldn’t harness the
remarkable power of machine reasoners.

We also face the challenge of show-
ing that our approach is truly gen-

eral. Can it work for any robots in any envi-
ronment? No, but this isn’t a fair question.
We can only be asked to regulate the behav-
ior of robots where their behavior is suscep-
tible to ethical analysis. In short, if humans
can’t formulate an ethical code C for the
robots in question, our logic-based approach
is impotent. We therefore strongly recom-
mend against engineering robots that could
be deployed in life-or-death situations until
ethicists and computer scientists can clearly
express governing ethical principles in nat-
ural language. All bets are off if we venture
into amoral territory. In that territory, we
wouldn’t be surprised if Bill Joy’s vision
overtakes us.

Acknowledgments
This work was supported in part by a grant from

Air Force Research Labs–Rome; we are most
grateful for this support. In addition, we are in debt
to three anonymous reviewers for trenchant com-
ments and objections.

References
1. W. Joy, “Why the Future Doesn’t Need Us,”

Wired, vol. 8, no. 4, 2000.

2. K. Arkoudas and S. Bringsjord, “Toward Eth-
ical Robots Via Mechanized Deontic Logic,”
tech. report Machine Ethics: papers from the
AAAI Fall Symp.; FS–05–06, 2005b.

3. I. Asimov, I, Robot, Spectra, 2004.

4. Leibniz, Notes on Analysis, translated by
G.M. Ross, Oxford University Press, 1984.

5. F. Feldman, Introduction to Ethics, McGraw
Hill, 1998.

6. L. Wos et al., Automated Reasoning: Intro-
duction and Applications, McGraw Hill,
1992.

7. J. Barwise and J. Etchemendy, Language,
Proof, and Logic, Seven Bridges, 1999.

8. B.F. Chellas, Modal Logic: An Introduction,
Cambridge University Press, 1980.

9. R. Hilpinen, “Deontic Logic,” Philosophical
Logic, L. Goble, ed., Blackwell, 2001, pp.
159–182.

10. G. von Wright, “Deontic logic,” Mind, vol.
60, 1951, pp. 1–15.

11. J. Horty, Agency and Deontic Logic, Oxford
University Press, 2001.

12. Y. Murakami, “Utilitarian Deontic Logic,”
Proc. 5th Int’l Conf. Advances in Modal Logic
(AiML 04), 2004, pp. 288–302.

13. K. Arkoudas and S. Bringsjord, “Metarea-
soning for Multi-Agent Epistemic Logics,”
Proc. 5th Int’l Conf. Computational Logic in
Multi-Agent Systems (CLIMA 04), LNAI,
Springer, vol. 3487, 2005a, pp. 111–125.

14. R. Chisholm, “Contrary-to-Duty Imperatives
and Deontic Logic,” Analysis, vol. 24, 1963,
pp. 33–36.

15. H. Levesque and R. Brachman, “A Funda-
mental Tradeoff in Knowledge Representa-
tion and Reasoning,” Readings In Knowledge
Representation, Morgan Kaufmann, 1985, pp.
41–70.

16. N. Friedland et al., “Project Halo: Towards a
Digital Aristotle,” AI Magazine, 2004, pp.
29–47.

17. R. Reiter, Knowledge in Action: Logical
Foundations for Specifying and Implement-
ing Dynamical Systems, MIT Press, 2001.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib.

T h e A u t h o r s
Selmer Bringsjord is a professor in the Departments of Cognitive Science
and Computer Science at Rensselaer Polytechnic Institute (RPI). His research
interests are in the logico-mathematical and philosophical foundations of AI
and cognitive science, and in building AI systems based on formal reasoning.
He received his PhD in philosophy from Brown University. Bringsjord is a
member of the AAAI, the Cognitive Science Society, and the Association for
Symbolic Logic. Bringsjord has written several books, including the criti-
cally acclaimed What Robots Can & Can’t Be (1992, Kluwer) and, most
recently, Superminds: People Harness Hypercomputation, and More (2003,

Kluwer). Contact him at either the Dept. of Cognitive Science or the Dept. of Computer Science, RPI,
Troy, NY 12180; selmer@rpi.edu; http://www.rpi.edu/~brings.

Konstantine Arkoudas is a research assistant professor in the Cognitive
Science Department at Rensselaer Polytechnic Institute. His research inter-
ests are in logic, programming languages, artificial intelligence, and philos-
ophy of computer science and mathematics. He received a PhD in computer
science from Massachusetts Institute of Technology. Contact him at the Dept.
of Cognitive Science, RPI, Troy, NY 12180; arkouk@rpi.edu.

Paul Bello is a computer scientist at the Air Force Research Laboratory’s Infor-
mation Directorate, where his research program involves endowing computa-
tional cognitive architectures with the representational richness and algorith-
mic diversity required for them to reason like human beings. He is particularly
interested in the computational foundations of human social reasoning and how
they manifest in intuitive theories of psychology and moral judgment. He
received his PhD in cognitive science from RPI. He’s a member of the AAAI
and the Cognitive Science Society. Contact him at Air Force Research Labs,
Information Directorate, Rome, NY 13441; paul.bello@rl.af.mil.

43

Part VIII

Explanation of Associated Code
1. Athena is obtainable from http://www.cogsci.rpi.edu/research/rair/projects.php by clicking there on

‘Athena.’ Athena (ath) files of course require Athena, and are loaded from within that system. ath
files corresponding to both the LNAI paper and the AAAI-FS/IEEE paper are provided at the url
given herein.

2. In addition, the functions needed for a logicist artificial agent are provided as well, in keeping with
the desire to allow calls to such a agent from within a simulation at AFRL. We provide, specifically,
a Windows executable, a tutorial transcript of a simple session, and a recorded demonstration (as a
movie). In addition, this implementation will be demonstrated in face-to-face meetings held at AFRL.
RAIR Lab researchers are tentatively scheduled to come to Rome for this purpose the week of May 8
2006. As to the functions themselves, they constitute the composite function of a logicist intelligent
agent, and include the ability to establish a signature for intelligent agents (the specification of relation
symbols, function symbols, constants, and so on), a knowledge base for an agent, and processing over
this knowledge base as the agent moves through time in the simulated world. For example, there is
a function for checking the consistency of a knowledge base (and a knowledge base and a proposed
addition to it), a function for adding to a knowledge base, functions for asking questions with respect
to a knowledge base, and so on. For the relevant content, please go to:

http://www.cogsci.rpi.edu/research/rair/wargaming/

52
4444

http://www.cogsci.rpi.edu/research/rair/projects.php
http://www.cogsci.rpi.edu/research/rair/wargaming
keyter
Text Box

	I What is in This Report?
	II Work Performed, Indexed to SOW
	Overall Objective
	Technical Requirements from the SOW
	Requirement 4.1
	Requirement 4.1.1
	Requirement 4.1.2
	Requirement 4.1.3
	Requirement 4.1.4

	VIII Explanation of Associated Code

